Remove Data Architecture Remove Data Integration Remove Metadata
article thumbnail

Simplify data integration with AWS Glue and zero-ETL to Amazon SageMaker Lakehouse

AWS Big Data

While traditional extract, transform, and load (ETL) processes have long been a staple of data integration due to its flexibility, for common use cases such as replication and ingestion, they often prove time-consuming, complex, and less adaptable to the fast-changing demands of modern data architectures.

article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

Need for a data mesh architecture Because entities in the EUROGATE group generate vast amounts of data from various sourcesacross departments, locations, and technologiesthe traditional centralized data architecture struggles to keep up with the demands for real-time insights, agility, and scalability.

IoT 111
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

How Metadata Makes Data Meaningful

erwin

Metadata is an important part of data governance, and as a result, most nascent data governance programs are rife with project plans for assessing and documenting metadata. But in many scenarios, it seems that the underlying driver of metadata collection projects is that it’s just something you do for data governance.

article thumbnail

How HPE Aruba Supply Chain optimized cost and performance by migrating to an AWS modern data architecture

AWS Big Data

This post describes how HPE Aruba automated their Supply Chain management pipeline, and re-architected and deployed their data solution by adopting a modern data architecture on AWS. Each file arrives as a pair with a tail metadata file in CSV format containing the size and name of the file.

article thumbnail

Use Apache Iceberg in your data lake with Amazon S3, AWS Glue, and Snowflake

AWS Big Data

They understand that a one-size-fits-all approach no longer works, and recognize the value in adopting scalable, flexible tools and open data formats to support interoperability in a modern data architecture to accelerate the delivery of new solutions.

Data Lake 127
article thumbnail

5 Ways Data Modeling Is Critical to Data Governance

erwin

That’s because it’s the best way to visualize metadata , and metadata is now the heart of enterprise data management and data governance/ intelligence efforts. So here’s why data modeling is so critical to data governance. erwin Data Modeler: Where the Magic Happens.

article thumbnail

Metadata, the Neglected Stepchild of IT

Data Virtualization

Reading Time: 3 minutes While cleaning up our archive recently, I found an old article published in 1976 about data dictionary/directory systems (DD/DS). Nowadays, we no longer use the term DD/DS, but “data catalog” or simply “metadata system”. It was written by L.