This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
The need for streamlined datatransformations As organizations increasingly adopt cloud-based datalakes and warehouses, the demand for efficient datatransformation tools has grown. This enables you to extract insights from your data without the complexity of managing infrastructure.
She decided to bring Resultant in to assist, starting with the firm’s strategic data assessment (SDA) framework, which evaluates a client’s data challenges in terms of people and processes, data models and structures, dataarchitecture and platforms, visual analytics and reporting, and advanced analytics.
With data becoming the driving force behind many industries today, having a modern dataarchitecture is pivotal for organizations to be successful. In this post, we describe Orca’s journey building a transactional datalake using Amazon Simple Storage Service (Amazon S3), Apache Iceberg, and AWS Analytics.
Need for a data mesh architecture Because entities in the EUROGATE group generate vast amounts of data from various sourcesacross departments, locations, and technologiesthe traditional centralized dataarchitecture struggles to keep up with the demands for real-time insights, agility, and scalability.
These tools empower analysts and data scientists to easily collaborate on the same data, with their choice of tools and analytic engines. No more lock-in, unnecessary datatransformations, or data movement across tools and clouds just to extract insights out of the data.
With Amazon AppFlow, you can run data flows at nearly any scale and at the frequency you chooseon a schedule, in response to a business event, or on demand. You can configure datatransformation capabilities such as filtering and validation to generate rich, ready-to-use data as part of the flow itself, without additional steps.
Datatransforms businesses. That’s where the data lifecycle comes into play. Managing data and its flow, from the edge to the cloud, is one of the most important tasks in the process of gaining data intelligence. . The company needed a modern dataarchitecture to manage the growing traffic effectively. .
Amazon Redshift is a fully managed data warehousing service that offers both provisioned and serverless options, making it more efficient to run and scale analytics without having to manage your data warehouse. Additionally, data is extracted from vendor APIs that includes data related to product, marketing, and customer experience.
However, you might face significant challenges when planning for a large-scale data warehouse migration. The following diagram illustrates a scalable migration pattern for extract, transform, and load (ETL) scenario. The success criteria are the key performance indicators (KPIs) for each component of the data workflow.
Amazon Redshift is a popular cloud data warehouse, offering a fully managed cloud-based service that seamlessly integrates with an organization’s Amazon Simple Storage Service (Amazon S3) datalake, real-time streams, machine learning (ML) workflows, transactional workflows, and much more—all while providing up to 7.9x
In this post, we delve into a case study for a retail use case, exploring how the Data Build Tool (dbt) was used effectively within an AWS environment to build a high-performing, efficient, and modern data platform. It does this by helping teams handle the T in ETL (extract, transform, and load) processes.
Amazon Redshift , a warehousing service, offers a variety of options for ingesting data from diverse sources into its high-performance, scalable environment. If storing operational data in a data warehouse is a requirement, synchronization of tables between operational data stores and Amazon Redshift tables is supported.
He mainly works with enterprise customers to help datalake migration and modernization, and provides guidance and technical assistance on big data projects such as Hadoop, Spark, data warehousing, real-time data processing, and large-scale machine learning. George Zhao is a Senior Data Architect at AWS ProServe.
Building datalakes from continuously changing transactional data of databases and keeping datalakes up to date is a complex task and can be an operational challenge. You can then apply transformations and store data in Delta format for managing inserts, updates, and deletes.
In another decade, the internet and mobile started the generate data of unforeseen volume, variety and velocity. It required a different data platform solution. Hence, DataLake emerged, which handles unstructured and structured data with huge volume. Data lakehouse was created to solve these problems.
Refactoring coupled compute and storage to a decoupling architecture is a modern data solution. It enables compute such as EMR instances and storage such as Amazon Simple Storage Service (Amazon S3) datalakes to scale. George Zhao is a Senior Data Architect at AWS ProServe.
DataLakes have been around for well over a decade now, supporting the analytic operations of some of the largest world corporations. Such data volumes are not easy to move, migrate or modernize. The challenges of a monolithic datalakearchitectureDatalakes are, at a high level, single repositories of data at scale.
To bring their customers the best deals and user experience, smava follows the modern dataarchitecture principles with a datalake as a scalable, durable data store and purpose-built data stores for analytical processing and data consumption.
Model, understand, and transform the data Comcast faced the challenge of collecting large amounts of information about potential security and reliability issues but with no easy way to make sense of it all, says Noopur Davis, corporate EVP, CISO, and chief product privacy officer.
The company started its New Analytics Era initiative by migrating its data from outdated SQL servers to a modern AWS datalake. It then built a cutting-edge cloud-based analytics platform, designed with an innovative dataarchitecture.
For many organizations, a centralized data platform will fall short as it gives data teams much less autonomy over managing increasingly diverse and voluminous datasets. A centralized data engineering team focuses on building a governed self-serviced infrastructure, while domain teams use the services to build full-stack data products.
Showpad also struggled with data quality issues in terms of consistency, ownership, and insufficient data access across its targeted user base due to a complex BI access process, licensing challenges, and insufficient education. The company also used the opportunity to reimagine its data pipeline and architecture.
Using AWS Glue , a serverless data integration service, companies can streamline this process, integrating data from internal and external sources into a centralized AWS datalake. From there, they can perform meaningful analytics, gain valuable insights, and optionally push enriched data back to external SaaS platforms.
We use the built-in features of Data Firehose, including AWS Lambda for necessary datatransformation and Amazon Simple Notification Service (Amazon SNS) for near real-time alerts. APIs act as the entry point for applications to access data, business logic, or functionality from your backend services.
Trino allows users to run ad hoc queries across massive datasets, making real-time decision-making a reality without needing extensive datatransformations. This is particularly valuable for teams that require instant answers from their data. DataLake Analytics: Trino doesn’t just stop at databases.
We organize all of the trending information in your field so you don't have to. Join 42,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content