Remove Data Architecture Remove Data Lake Remove Data Warehouse
article thumbnail

Data Warehouses vs. Data Lakes vs. Data Marts: Need Help Deciding?

KDnuggets

A comparative overview of data warehouses, data lakes, and data marts to help you make informed decisions on data storage solutions for your data architecture.

Data Lake 134
article thumbnail

Load data incrementally from transactional data lakes to data warehouses

AWS Big Data

Data lakes and data warehouses are two of the most important data storage and management technologies in a modern data architecture. Data lakes store all of an organization’s data, regardless of its format or structure.

Data Lake 125
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Incremental refresh for Amazon Redshift materialized views on data lake tables

AWS Big Data

Amazon Redshift is a fast, fully managed cloud data warehouse that makes it cost-effective to analyze your data using standard SQL and business intelligence tools. Customers use data lake tables to achieve cost effective storage and interoperability with other tools.

article thumbnail

Laying the Foundation for Modern Data Architecture

Cloudera

It’s not enough for businesses to implement and maintain a data architecture. The unpredictability of market shifts and the evolving use of new technologies means businesses need more data they can trust than ever to stay agile and make the right decisions.

article thumbnail

Checklist Report: Preparing for the Next-Generation Cloud Data Architecture

Data architectures to support reporting, business intelligence, and analytics have evolved dramatically over the past 10 years. Download this TDWI Checklist report to understand: How your organization can make this transition to a modernized data architecture. The decision making around this transition.

article thumbnail

From data lakes to insights: dbt adapter for Amazon Athena now supported in dbt Cloud

AWS Big Data

The need for streamlined data transformations As organizations increasingly adopt cloud-based data lakes and warehouses, the demand for efficient data transformation tools has grown. This enables you to extract insights from your data without the complexity of managing infrastructure.

article thumbnail

Accelerate Amazon Redshift Data Lake queries with AWS Glue Data Catalog Column Statistics

AWS Big Data

Amazon Redshift enables you to efficiently query and retrieve structured and semi-structured data from open format files in Amazon S3 data lake without having to load the data into Amazon Redshift tables. Amazon Redshift extends SQL capabilities to your data lake, enabling you to run analytical queries.

Data Lake 108
article thumbnail

The Unexpected Cost of Data Copies

An organization’s data is copied for many reasons, namely ingesting datasets into data warehouses, creating performance-optimized copies, and building BI extracts for analysis. Read this whitepaper to learn: Why organizations frequently end up with unnecessary data copies.

article thumbnail

The Next-Generation Cloud Data Lake: An Open, No-Copy Data Architecture

However, they often struggle with increasingly larger data volumes, reverting back to bottlenecking data access to manage large numbers of data engineering requests and rising data warehousing costs. This new open data architecture is built to maximize data access with minimal data movement and no data copies.