Remove Data Architecture Remove Data Lake Remove Metrics
article thumbnail

From data lakes to insights: dbt adapter for Amazon Athena now supported in dbt Cloud

AWS Big Data

The need for streamlined data transformations As organizations increasingly adopt cloud-based data lakes and warehouses, the demand for efficient data transformation tools has grown. This enables you to extract insights from your data without the complexity of managing infrastructure.

article thumbnail

Eight Top DataOps Trends for 2022

DataKitchen

In 2022, data organizations will institute robust automated processes around their AI systems to make them more accountable to stakeholders. Quality test suites will enforce “equity,” like any other performance metric. Data Gets Meshier. 2022 will bring further momentum behind modular enterprise architectures like data mesh.

Testing 245
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Choosing an open table format for your transactional data lake on AWS

AWS Big Data

A modern data architecture enables companies to ingest virtually any type of data through automated pipelines into a data lake, which provides highly durable and cost-effective object storage at petabyte or exabyte scale.

Data Lake 130
article thumbnail

How Cloudinary transformed their petabyte scale streaming data lake with Apache Iceberg and AWS Analytics

AWS Big Data

Since Apache Iceberg is well supported by AWS data services and Cloudinary was already using Spark on Amazon EMR, they could integrate writing to Data Catalog and start an additional Spark cluster to handle data maintenance and compaction. For example, for certain queries, Athena runtime was 2x–4x faster than Snowflake.

Data Lake 126
article thumbnail

Simplify data integration with AWS Glue and zero-ETL to Amazon SageMaker Lakehouse

AWS Big Data

While traditional extract, transform, and load (ETL) processes have long been a staple of data integration due to its flexibility, for common use cases such as replication and ingestion, they often prove time-consuming, complex, and less adaptable to the fast-changing demands of modern data architectures.

article thumbnail

Orca Security’s journey to a petabyte-scale data lake with Apache Iceberg and AWS Analytics

AWS Big Data

With data becoming the driving force behind many industries today, having a modern data architecture is pivotal for organizations to be successful. In this post, we describe Orca’s journey building a transactional data lake using Amazon Simple Storage Service (Amazon S3), Apache Iceberg, and AWS Analytics.

article thumbnail

Simplify operational data processing in data lakes using AWS Glue and Apache Hudi

AWS Big Data

The Analytics specialty practice of AWS Professional Services (AWS ProServe) helps customers across the globe with modern data architecture implementations on the AWS Cloud. Of those tables, some are larger (such as in terms of record volume) than others, and some are updated more frequently than others.

Data Lake 111