Remove Data Architecture Remove Data Lake Remove Reporting
article thumbnail

What is a Data Mesh?

DataKitchen

The data mesh design pattern breaks giant, monolithic enterprise data architectures into subsystems or domains, each managed by a dedicated team. First-generation – expensive, proprietary enterprise data warehouse and business intelligence platforms maintained by a specialized team drowning in technical debt.

article thumbnail

The next generation of Amazon SageMaker: The center for all your data, analytics, and AI

AWS Big Data

Our customers are telling us that they are seeing their analytics and AI workloads increasingly converge around a lot of the same data, and this is changing how they are using analytics tools with their data. Introducing the next generation of SageMaker The rise of generative AI is changing how data and AI teams work together.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Build a serverless transactional data lake with Apache Iceberg, Amazon EMR Serverless, and Amazon Athena

AWS Big Data

Since the deluge of big data over a decade ago, many organizations have learned to build applications to process and analyze petabytes of data. Data lakes have served as a central repository to store structured and unstructured data at any scale and in various formats.

Data Lake 122
article thumbnail

Choosing an open table format for your transactional data lake on AWS

AWS Big Data

A modern data architecture enables companies to ingest virtually any type of data through automated pipelines into a data lake, which provides highly durable and cost-effective object storage at petabyte or exabyte scale.

Data Lake 130
article thumbnail

Checklist Report: Preparing for the Next-Generation Cloud Data Architecture

Data architectures to support reporting, business intelligence, and analytics have evolved dramatically over the past 10 years. Download this TDWI Checklist report to understand: How your organization can make this transition to a modernized data architecture. The decision making around this transition.

article thumbnail

How Cloudinary transformed their petabyte scale streaming data lake with Apache Iceberg and AWS Analytics

AWS Big Data

Cloudinary struggled to use this data for additional teams who had more online, real time, lower-granularity, dynamic usage requirements. Making petabytes of data accessible for ad-hoc reports became a challenge as query time increased and costs skyrocketed along with growing compute resource requirements. 5 seconds $0.08

Data Lake 126
article thumbnail

Centralize Your Data Processes With a DataOps Process Hub

DataKitchen

Data organizations often have a mix of centralized and decentralized activity. DataOps concerns itself with the complex flow of data across teams, data centers and organizational boundaries. It expands beyond tools and data architecture and views the data organization from the perspective of its processes and workflows.