Remove Data Architecture Remove Data Processing Remove Data Warehouse
article thumbnail

Migrate a petabyte-scale data warehouse from Actian Vectorwise to Amazon Redshift

AWS Big Data

Amazon Redshift is a fast, scalable, and fully managed cloud data warehouse that allows you to process and run your complex SQL analytics workloads on structured and semi-structured data. The system had an integration with legacy backend services that were all hosted on premises. The downside here is over-provisioning.

article thumbnail

Power analytics as a service capabilities using Amazon Redshift

AWS Big Data

The AaaS model accelerates data-driven decision-making through advanced analytics, enabling organizations to swiftly adapt to changing market trends and make informed strategic choices. times better price-performance than other cloud data warehouses. Data processing jobs enrich the data in Amazon Redshift.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

The Top Three Entangled Trends in Data Architectures: Data Mesh, Data Fabric, and Hybrid Architectures

Cloudera

Each of these trends claim to be complete models for their data architectures to solve the “everything everywhere all at once” problem. Data teams are confused as to whether they should get on the bandwagon of just one of these trends or pick a combination. First, we describe how data mesh and data fabric could be related.

article thumbnail

5 misconceptions about cloud data warehouses

IBM Big Data Hub

In today’s world, data warehouses are a critical component of any organization’s technology ecosystem. The rise of cloud has allowed data warehouses to provide new capabilities such as cost-effective data storage at petabyte scale, highly scalable compute and storage, pay-as-you-go pricing and fully managed service delivery.

article thumbnail

Unlocking near real-time analytics with petabytes of transaction data using Amazon Aurora Zero-ETL integration with Amazon Redshift and dbt Cloud

AWS Big Data

While customers can perform some basic analysis within their operational or transactional databases, many still need to build custom data pipelines that use batch or streaming jobs to extract, transform, and load (ETL) data into their data warehouse for more comprehensive analysis.

article thumbnail

Unlock scalability, cost-efficiency, and faster insights with large-scale data migration to Amazon Redshift

AWS Big Data

Large-scale data warehouse migration to the cloud is a complex and challenging endeavor that many organizations undertake to modernize their data infrastructure, enhance data management capabilities, and unlock new business opportunities. This makes sure the new data platform can meet current and future business goals.

article thumbnail

Design a data mesh pattern for Amazon EMR-based data lakes using AWS Lake Formation with Hive metastore federation

AWS Big Data

One of the key challenges in modern big data management is facilitating efficient data sharing and access control across multiple EMR clusters. Organizations have multiple Hive data warehouses across EMR clusters, where the metadata gets generated. The producer account will host the EMR cluster and S3 buckets.

Data Lake 113