Remove Data Architecture Remove Data Processing Remove Metadata
article thumbnail

The Top Three Entangled Trends in Data Architectures: Data Mesh, Data Fabric, and Hybrid Architectures

Cloudera

Each of these trends claim to be complete models for their data architectures to solve the “everything everywhere all at once” problem. Data teams are confused as to whether they should get on the bandwagon of just one of these trends or pick a combination. First, we describe how data mesh and data fabric could be related.

article thumbnail

How Cargotec uses metadata replication to enable cross-account data sharing

AWS Big Data

They chose AWS Glue as their preferred data integration tool due to its serverless nature, low maintenance, ability to control compute resources in advance, and scale when needed. To share the datasets, they needed a way to share access to the data and access to catalog metadata in the form of tables and views.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Design a data mesh pattern for Amazon EMR-based data lakes using AWS Lake Formation with Hive metastore federation

AWS Big Data

Organizations have multiple Hive data warehouses across EMR clusters, where the metadata gets generated. To address this challenge, organizations can deploy a data mesh using AWS Lake Formation that connects the multiple EMR clusters. An entity can act both as a producer of data assets and as a consumer of data assets.

article thumbnail

Migrate an existing data lake to a transactional data lake using Apache Iceberg

AWS Big Data

Over the years, data lakes on Amazon Simple Storage Service (Amazon S3) have become the default repository for enterprise data and are a common choice for a large set of users who query data for a variety of analytics and machine leaning use cases. Analytics use cases on data lakes are always evolving. Choose ETL Jobs.

Data Lake 110
article thumbnail

Modernize your legacy databases with AWS data lakes, Part 2: Build a data lake using AWS DMS data on Apache Iceberg

AWS Big Data

This is part two of a three-part series where we show how to build a data lake on AWS using a modern data architecture. This post shows how to load data from a legacy database (SQL Server) into a transactional data lake ( Apache Iceberg ) using AWS Glue. To start the job, choose Run. format(dbname)).config("spark.sql.catalog.glue_catalog.catalog-impl",

article thumbnail

Boosting Object Storage Performance with Ozone Manager

Cloudera

It is a replicated, highly-available service that is responsible for managing the metadata for all objects stored in Ozone. As Ozone scales to exabytes of data, it is important to ensure that Ozone Manager can perform at scale. The tool reads only the metadata for objects in a cluster with around 100 million keys.

article thumbnail

Build SAML identity federation for Amazon OpenSearch Service domains within a VPC

AWS Big Data

Create an Amazon Route 53 public hosted zone such as mydomain.com to be used for routing internet traffic to your domain. For instructions, refer to Creating a public hosted zone. Request an AWS Certificate Manager (ACM) public certificate for the hosted zone. hosted_zone_id – The Route 53 public hosted zone ID.