Remove Data Architecture Remove Data Processing Remove Structured Data
article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

Need for a data mesh architecture Because entities in the EUROGATE group generate vast amounts of data from various sourcesacross departments, locations, and technologiesthe traditional centralized data architecture struggles to keep up with the demands for real-time insights, agility, and scalability.

IoT 100
article thumbnail

Large Language Models and Data Management

Ontotext

I did some research because I wanted to create a basic framework on the intersection between large language models (LLM) and data management. But there are also a host of other issues (and cautions) to take into consideration. Another concern relates to the definition of ‘data constraints.’

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Big Data Ingestion: Parameters, Challenges, and Best Practices

datapine

Operations data: Data generated from a set of operations such as orders, online transactions, competitor analytics, sales data, point of sales data, pricing data, etc. The gigantic evolution of structured, unstructured, and semi-structured data is referred to as Big data. Self-Service.

Big Data 100
article thumbnail

How Cloudera Data Flow Enables Successful Data Mesh Architectures

Cloudera

Those decentralization efforts appeared under different monikers through time, e.g., data marts versus data warehousing implementations (a popular architectural debate in the era of structured data) then enterprise-wide data lakes versus smaller, typically BU-Specific, “data ponds”.

Metadata 124
article thumbnail

Migrate a petabyte-scale data warehouse from Actian Vectorwise to Amazon Redshift

AWS Big Data

Amazon Redshift is a fast, scalable, and fully managed cloud data warehouse that allows you to process and run your complex SQL analytics workloads on structured and semi-structured data. The system had an integration with legacy backend services that were all hosted on premises.

article thumbnail

How smava makes loans transparent and affordable using Amazon Redshift Serverless

AWS Big Data

Overview of solution As a data-driven company, smava relies on the AWS Cloud to power their analytics use cases. smava ingests data from various external and internal data sources into a landing stage on the data lake based on Amazon Simple Storage Service (Amazon S3).

Data Lake 103
article thumbnail

Design a data mesh on AWS that reflects the envisioned organization

AWS Big Data

They classified the metrics and indicators in the following categories: Data usage – A clear understanding of who is consuming what data source, materialized with a mapping of consumers and producers. For other organizations, the desired data mesh might look different and the approach might have other learnings.