Remove Data Architecture Remove Data Quality Remove Data Science
article thumbnail

7 types of tech debt that could cripple your business

CIO Business Intelligence

Data debt that undermines decision-making In Digital Trailblazer , I share a story of a private company that reported a profitable year to the board, only to return after the holiday to find that data quality issues and calculation mistakes turned it into an unprofitable one.

Risk 140
article thumbnail

The next generation of Amazon SageMaker: The center for all your data, analytics, and AI

AWS Big Data

With this launch, you can query data regardless of where it is stored with support for a wide range of use cases, including analytics, ad-hoc querying, data science, machine learning, and generative AI. Having confidence in your data is key. The right governance practices can enable your teams to move faster.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

The future of data: A 5-pillar approach to modern data management

CIO Business Intelligence

This approach is repeatable, minimizes dependence on manual controls, harnesses technology and AI for data management and integrates seamlessly into the digital product development process. Furthermore, generally speaking, data should not be split across multiple databases on different cloud providers to achieve cloud neutrality.

article thumbnail

Data architecture strategy for data quality

IBM Big Data Hub

Poor data quality is one of the top barriers faced by organizations aspiring to be more data-driven. Ill-timed business decisions and misinformed business processes, missed revenue opportunities, failed business initiatives and complex data systems can all stem from data quality issues.

article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

For container terminal operators, data-driven decision-making and efficient data sharing are vital to optimizing operations and boosting supply chain efficiency. Two use cases illustrate how this can be applied for business intelligence (BI) and data science applications, using AWS services such as Amazon Redshift and Amazon SageMaker.

IoT 111
article thumbnail

Breaking State and Local Data Silos with Modern Data Architectures

Cloudera

Legacy data sharing involves proliferating copies of data, creating data management, and security challenges. Data quality issues deter trust and hinder accurate analytics. Modern data architectures. Towards Data Science ). Deploying modern data architectures. Forrester ).

article thumbnail

Data integrity vs. data quality: Is there a difference?

IBM Big Data Hub

When we talk about data integrity, we’re referring to the overarching completeness, accuracy, consistency, accessibility, and security of an organization’s data. Together, these factors determine the reliability of the organization’s data. Data quality Data quality is essentially the measure of data integrity.