This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Here are six benefits of automating end-to-end data lineage: Reduced Errors and Operational Costs. Dataquality is crucial to every organization. Automated data capture can significantly reduce errors when compared to manual entry.
Uncomfortable truth incoming: Most people in your organization don’t think about the quality of their data from intake to production of insights. However, as a data team member, you know how important data integrity (and a whole host of other aspects of data management) is.
In this post, we delve into a case study for a retail use case, exploring how the Data Build Tool (dbt) was used effectively within an AWS environment to build a high-performing, efficient, and modern data platform. It does this by helping teams handle the T in ETL (extract, transform, and load) processes. usr/local/airflow/.local/bin/dbt
The need for streamlined datatransformations As organizations increasingly adopt cloud-based data lakes and warehouses, the demand for efficient datatransformation tools has grown. This enables you to extract insights from your data without the complexity of managing infrastructure.
However, you might face significant challenges when planning for a large-scale data warehouse migration. The following diagram illustrates a scalable migration pattern for extract, transform, and load (ETL) scenario. The success criteria are the key performance indicators (KPIs) for each component of the data workflow.
With data becoming the driving force behind many industries today, having a modern dataarchitecture is pivotal for organizations to be successful. Prior to the creation of the data lake, Orca’s data was distributed among various data silos, each owned by a different team with its own data pipelines and technology stack.
In our last blog , we delved into the seven most prevalent data challenges that can be addressed with effective data governance. Today we will share our approach to developing a data governance program to drive datatransformation and fuel a data-driven culture. Don’t try to do everything at once!
The goal of a data product is to solve the long-standing issue of data silos and dataquality. Independent data products often only have value if you can connect them, join them, and correlate them to create a higher order data product that creates additional insights.
Need for a data mesh architecture Because entities in the EUROGATE group generate vast amounts of data from various sourcesacross departments, locations, and technologiesthe traditional centralized dataarchitecture struggles to keep up with the demands for real-time insights, agility, and scalability.
It accelerates data projects with dataquality and lineage and contextualizes through ontologies , taxonomies, and vocabularies, making integrations easier. RDF is used extensively for data publishing and data interchange and is based on W3C and other industry standards. Increasingly, organizations are using both.
It may well be that one thing that a CDO needs to get going is a datatransformation programme. This may purely be focused on cultural aspects of how an organisation records, shares and otherwise uses data. It may be to build a new (or a first) DataArchitecture. It may be to introduce or expand Data Governance.
The data mesh framework In the dynamic landscape of data management, the search for agility, scalability, and efficiency has led organizations to explore new, innovative approaches. One such innovation gaining traction is the data mesh framework. Business Glossaries – what is the business meaning of our data?
This is especially beneficial when teams need to increase data product velocity with trust and dataquality, reduce communication costs, and help data solutions align with business objectives. In most enterprises, data is needed and produced by many business units but owned and trusted by no one.
Given the importance of sharing information among diverse disciplines in the era of digital transformation, this concept is arguably as important as ever. The aim is to normalize, aggregate, and eventually make available to analysts across the organization data that originates in various pockets of the enterprise.
“Each of these tools were getting data from a different place, and that’s where it gets difficult,” says Jeroen Minnaert, head of data at Showpad. “If If each tool tells a different story because it has different data, we won’t have alignment within the business on what this data means.”
It allows organizations to see how data is being used, where it is coming from, its quality, and how it is being transformed. DataOps Observability includes monitoring and testing the data pipeline, dataquality, data testing, and alerting. Are problems with data tests? When did it last run?
We organize all of the trending information in your field so you don't have to. Join 42,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content