Remove Data Architecture Remove Data Quality Remove Events
article thumbnail

Data’s dark secret: Why poor quality cripples AI and growth

CIO Business Intelligence

As technology and business leaders, your strategic initiatives, from AI-powered decision-making to predictive insights and personalized experiences, are all fueled by data. Yet, despite growing investments in advanced analytics and AI, organizations continue to grapple with a persistent and often underestimated challenge: poor data quality.

article thumbnail

Visualize data quality scores and metrics generated by AWS Glue Data Quality

AWS Big Data

AWS Glue Data Quality allows you to measure and monitor the quality of data in your data repositories. It’s important for business users to be able to see quality scores and metrics to make confident business decisions and debug data quality issues. An AWS Glue crawler crawls the results.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

From data lakes to insights: dbt adapter for Amazon Athena now supported in dbt Cloud

AWS Big Data

This enables you to extract insights from your data without the complexity of managing infrastructure. dbt has emerged as a leading framework, allowing data teams to transform and manage data pipelines effectively. With dbt, teams can define data quality checks and access controls as part of their transformation workflow.

Data Lake 103
article thumbnail

How HPE Aruba Supply Chain optimized cost and performance by migrating to an AWS modern data architecture

AWS Big Data

This complex process involves suppliers, logistics, quality control, and delivery. This post describes how HPE Aruba automated their Supply Chain management pipeline, and re-architected and deployed their data solution by adopting a modern data architecture on AWS.

article thumbnail

Automated data governance with AWS Glue Data Quality, sensitive data detection, and AWS Lake Formation

AWS Big Data

Due to the volume, velocity, and variety of data being ingested in data lakes, it can get challenging to develop and maintain policies and procedures to ensure data governance at scale for your data lake. Data confidentiality and data quality are the two essential themes for data governance.

article thumbnail

How to Manage Risk with Modern Data Architectures

Cloudera

To improve the way they model and manage risk, institutions must modernize their data management and data governance practices. Implementing a modern data architecture makes it possible for financial institutions to break down legacy data silos, simplifying data management, governance, and integration — and driving down costs.

article thumbnail

Manage concurrent write conflicts in Apache Iceberg on the AWS Glue Data Catalog

AWS Big Data

In modern data architectures, Apache Iceberg has emerged as a popular table format for data lakes, offering key features including ACID transactions and concurrent write support. These conflicts are particularly common in large-scale data cleanup operations.

Snapshot 137