Remove Data Architecture Remove Data Quality Remove Metadata
article thumbnail

Very Meta … Unlocking Data’s Potential with Metadata Management Solutions

erwin

Untapped data, if mined, represents tremendous potential for your organization. While there has been a lot of talk about big data over the years, the real hero in unlocking the value of enterprise data is metadata , or the data about the data. Metadata Is the Heart of Data Intelligence.

Metadata 104
article thumbnail

Amazon DataZone now integrates with AWS Glue Data Quality and external data quality solutions

AWS Big Data

Today, we are pleased to announce that Amazon DataZone is now able to present data quality information for data assets. Other organizations monitor the quality of their data through third-party solutions. Additionally, Amazon DataZone now offers APIs for importing data quality scores from external systems.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

What is a Data Mesh?

DataKitchen

The data mesh design pattern breaks giant, monolithic enterprise data architectures into subsystems or domains, each managed by a dedicated team. The communication between business units and data professionals is usually incomplete and inconsistent. Introduction to Data Mesh. Source: Thoughtworks.

article thumbnail

How Metadata Makes Data Meaningful

erwin

Metadata is an important part of data governance, and as a result, most nascent data governance programs are rife with project plans for assessing and documenting metadata. But in many scenarios, it seems that the underlying driver of metadata collection projects is that it’s just something you do for data governance.

article thumbnail

Data architecture strategy for data quality

IBM Big Data Hub

Poor data quality is one of the top barriers faced by organizations aspiring to be more data-driven. Ill-timed business decisions and misinformed business processes, missed revenue opportunities, failed business initiatives and complex data systems can all stem from data quality issues.

article thumbnail

How to Manage Risk with Modern Data Architectures

Cloudera

To improve the way they model and manage risk, institutions must modernize their data management and data governance practices. Implementing a modern data architecture makes it possible for financial institutions to break down legacy data silos, simplifying data management, governance, and integration — and driving down costs.

article thumbnail

Breaking State and Local Data Silos with Modern Data Architectures

Cloudera

Legacy data sharing involves proliferating copies of data, creating data management, and security challenges. Data quality issues deter trust and hinder accurate analytics. Modern data architectures. Deploying modern data architectures. Forrester ).