Remove Data Architecture Remove Data Quality Remove Reference
article thumbnail

The Race For Data Quality in a Medallion Architecture

DataKitchen

The Race For Data Quality In A Medallion Architecture The Medallion architecture pattern is gaining traction among data teams. It is a layered approach to managing and transforming data. It sounds great, but how do you prove the data is correct at each layer?

article thumbnail

Amazon DataZone now integrates with AWS Glue Data Quality and external data quality solutions

AWS Big Data

Today, we are pleased to announce that Amazon DataZone is now able to present data quality information for data assets. Other organizations monitor the quality of their data through third-party solutions. Additionally, Amazon DataZone now offers APIs for importing data quality scores from external systems.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Visualize data quality scores and metrics generated by AWS Glue Data Quality

AWS Big Data

AWS Glue Data Quality allows you to measure and monitor the quality of data in your data repositories. It’s important for business users to be able to see quality scores and metrics to make confident business decisions and debug data quality issues. An AWS Glue crawler crawls the results.

article thumbnail

The next generation of Amazon SageMaker: The center for all your data, analytics, and AI

AWS Big Data

SageMaker still includes all the existing ML and AI capabilities you’ve come to know and love for data wrangling, human-in-the-loop data labeling with Amazon SageMaker Ground Truth , experiments, MLOps, Amazon SageMaker HyperPod managed distributed training, and more. Having confidence in your data is key.

article thumbnail

Perform data parity at scale for data modernization programs using AWS Glue Data Quality

AWS Big Data

Some customers build custom in-house data parity frameworks to validate data during migration. Others use open source data quality products for data parity use cases. This takes away important person hours from the actual migration effort into building and maintaining a data parity framework.

article thumbnail

Automated data governance with AWS Glue Data Quality, sensitive data detection, and AWS Lake Formation

AWS Big Data

Due to the volume, velocity, and variety of data being ingested in data lakes, it can get challenging to develop and maintain policies and procedures to ensure data governance at scale for your data lake. Data confidentiality and data quality are the two essential themes for data governance.

article thumbnail

How HPE Aruba Supply Chain optimized cost and performance by migrating to an AWS modern data architecture

AWS Big Data

This complex process involves suppliers, logistics, quality control, and delivery. This post describes how HPE Aruba automated their Supply Chain management pipeline, and re-architected and deployed their data solution by adopting a modern data architecture on AWS.