Remove Data Architecture Remove Data Transformation Remove Interactive
article thumbnail

From data lakes to insights: dbt adapter for Amazon Athena now supported in dbt Cloud

AWS Big Data

The need for streamlined data transformations As organizations increasingly adopt cloud-based data lakes and warehouses, the demand for efficient data transformation tools has grown. This enables you to extract insights from your data without the complexity of managing infrastructure.

article thumbnail

Unlocking near real-time analytics with petabytes of transaction data using Amazon Aurora Zero-ETL integration with Amazon Redshift and dbt Cloud

AWS Big Data

Together with price-performance, Amazon Redshift offers capabilities such as serverless architecture, machine learning integration within your data warehouse and secure data sharing across the organization. dbt Cloud is a hosted service that helps data teams productionize dbt deployments.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

BMW Cloud Efficiency Analytics powered by Amazon QuickSight and Amazon Athena

AWS Big Data

The difference lies in when and where data transformation takes place. In ETL, data is transformed before it’s loaded into the data warehouse. In ELT, raw data is loaded into the data warehouse first, then it’s transformed directly within the warehouse.

article thumbnail

Create a modern data platform using the Data Build Tool (dbt) in the AWS Cloud

AWS Big Data

In this post, we delve into a case study for a retail use case, exploring how the Data Build Tool (dbt) was used effectively within an AWS environment to build a high-performing, efficient, and modern data platform. It does this by helping teams handle the T in ETL (extract, transform, and load) processes.

article thumbnail

Unlock scalability, cost-efficiency, and faster insights with large-scale data migration to Amazon Redshift

AWS Big Data

However, you might face significant challenges when planning for a large-scale data warehouse migration. The following diagram illustrates a scalable migration pattern for extract, transform, and load (ETL) scenario. The success criteria are the key performance indicators (KPIs) for each component of the data workflow.

article thumbnail

Power enterprise-grade Data Vaults with Amazon Redshift – Part 1

AWS Big Data

Data Vault 2.0 allows for the following: Agile data warehouse development Parallel data ingestion A scalable approach to handle multiple data sources even on the same entity A high level of automation Historization Full lineage support However, Data Vault 2.0

article thumbnail

Data platform trinity: Competitive or complementary?

IBM Big Data Hub

This adds an additional ETL step, making the data even more stale. Data lakehouse was created to solve these problems. The data warehouse storage layer is removed from lakehouse architectures. Instead, continuous data transformation is performed within the BLOB storage. Data mesh: A mostly new culture.