Remove Data Architecture Remove Data Transformation Remove Measurement
article thumbnail

Data’s dark secret: Why poor quality cripples AI and growth

CIO Business Intelligence

We also examine how centralized, hybrid and decentralized data architectures support scalable, trustworthy ecosystems. As data-centric AI, automated metadata management and privacy-aware data sharing mature, the opportunity to embed data quality into the enterprises core has never been more significant.

article thumbnail

Measuring Maturity

Peter James Thomas

The author, engaged in measuring maturity – © Jennifer Thomas Photography – view full photo. In the thirteen years that have passed since the beginning of 2007, I have helped ten organisations to develop commercially-focused Data Strategies [1].

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

Need for a data mesh architecture Because entities in the EUROGATE group generate vast amounts of data from various sourcesacross departments, locations, and technologiesthe traditional centralized data architecture struggles to keep up with the demands for real-time insights, agility, and scalability.

IoT 111
article thumbnail

Unlock scalability, cost-efficiency, and faster insights with large-scale data migration to Amazon Redshift

AWS Big Data

However, you might face significant challenges when planning for a large-scale data warehouse migration. The following diagram illustrates a scalable migration pattern for extract, transform, and load (ETL) scenario. The success criteria are the key performance indicators (KPIs) for each component of the data workflow.

article thumbnail

Amazon Redshift data ingestion options

AWS Big Data

If storing operational data in a data warehouse is a requirement, synchronization of tables between operational data stores and Amazon Redshift tables is supported. In scenarios where data transformation is required, you can use Redshift stored procedures to modify data in Redshift tables.

IoT 111
article thumbnail

A step-by-step guide to setting up a data governance program

IBM Big Data Hub

In our last blog , we delved into the seven most prevalent data challenges that can be addressed with effective data governance. Today we will share our approach to developing a data governance program to drive data transformation and fuel a data-driven culture. Don’t try to do everything at once!

article thumbnail

How GamesKraft uses Amazon Redshift data sharing to support growing analytics workloads

AWS Big Data

In pursuit of this principle, strategic measures were undertaken to ensure a smooth migration process towards enabling data sharing, which included the following steps: Planning: Replicating users and groups to the consumer, to mitigate potential access complications for analytics, data science, and BI teams.