Remove Data Architecture Remove Data Warehouse Remove Snapshot
article thumbnail

Load data incrementally from transactional data lakes to data warehouses

AWS Big Data

Data lakes and data warehouses are two of the most important data storage and management technologies in a modern data architecture. Data lakes store all of an organization’s data, regardless of its format or structure. Delta Lake doesn’t have a specific concept for incremental queries.

Data Lake 136
article thumbnail

Cloud Data Warehouse Migration 101: Expert Tips

Alation

It’s costly and time-consuming to manage on-premises data warehouses — and modern cloud data architectures can deliver business agility and innovation. However, CIOs declare that agility, innovation, security, adopting new capabilities, and time to value — never cost — are the top drivers for cloud data warehousing.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Use Apache Iceberg in your data lake with Amazon S3, AWS Glue, and Snowflake

AWS Big Data

They understand that a one-size-fits-all approach no longer works, and recognize the value in adopting scalable, flexible tools and open data formats to support interoperability in a modern data architecture to accelerate the delivery of new solutions. Snowflake can query across Iceberg and Snowflake table formats.

Data Lake 122
article thumbnail

Build a multi-Region and highly resilient modern data architecture using AWS Glue and AWS Lake Formation

AWS Big Data

Data migration must be performed separately using methods such as S3 replication , S3 sync, aws-s3-copy-sync-using-batch or S3 Batch replication. This utility has two modes for replicating Lake Formation and Data Catalog metadata: on-demand and real-time. Nivas Shankar is a Principal Product Manager for AWS Lake Formation.

article thumbnail

How Cloudinary transformed their petabyte scale streaming data lake with Apache Iceberg and AWS Analytics

AWS Big Data

Solving the small file problem and improving query performance In modern data architectures, stream processing engines such as Amazon EMR are often used to ingest continuous streams of data into data lakes using Apache Iceberg. A metadata or data file is considered orphan if it isn’t reachable by any valid snapshot.

Data Lake 126
article thumbnail

Run Apache XTable in AWS Lambda for background conversion of open table formats

AWS Big Data

This post was co-written with Dipankar Mazumdar, Staff Data Engineering Advocate with AWS Partner OneHouse. Data architecture has evolved significantly to handle growing data volumes and diverse workloads. Querying all snapshots, we can see that we created three snapshots with overwrites after the initial one.

Metadata 105
article thumbnail

Unlock scalability, cost-efficiency, and faster insights with large-scale data migration to Amazon Redshift

AWS Big Data

Large-scale data warehouse migration to the cloud is a complex and challenging endeavor that many organizations undertake to modernize their data infrastructure, enhance data management capabilities, and unlock new business opportunities. This makes sure the new data platform can meet current and future business goals.