Remove Data Architecture Remove Definition Remove Metadata
article thumbnail

Data’s dark secret: Why poor quality cripples AI and growth

CIO Business Intelligence

Yet, despite growing investments in advanced analytics and AI, organizations continue to grapple with a persistent and often underestimated challenge: poor data quality. Fragmented systems, inconsistent definitions, legacy infrastructure and manual workarounds introduce critical risks.

article thumbnail

Run Apache XTable in AWS Lambda for background conversion of open table formats

AWS Big Data

This post was co-written with Dipankar Mazumdar, Staff Data Engineering Advocate with AWS Partner OneHouse. Data architecture has evolved significantly to handle growing data volumes and diverse workloads. This allows the existing data to be interpreted as if it were originally written in any of these formats.

Metadata 105
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Very Meta … Unlocking Data’s Potential with Metadata Management Solutions

erwin

Untapped data, if mined, represents tremendous potential for your organization. While there has been a lot of talk about big data over the years, the real hero in unlocking the value of enterprise data is metadata , or the data about the data. Metadata Is the Heart of Data Intelligence.

Metadata 104
article thumbnail

Data Management 20/20: Anatomy of a Business Glossary Definition

TDAN

Standards exist for naming conventions, abbreviations and other pertinent metadata properties. Consistent business meaning is important because distinctions between business terms are not typically well defined or documented. What are the standards for writing […].

article thumbnail

5 Ways Data Modeling Is Critical to Data Governance

erwin

That’s because it’s the best way to visualize metadata , and metadata is now the heart of enterprise data management and data governance/ intelligence efforts. So here’s why data modeling is so critical to data governance. erwin Data Modeler: Where the Magic Happens.

article thumbnail

The Top Three Entangled Trends in Data Architectures: Data Mesh, Data Fabric, and Hybrid Architectures

Cloudera

Each of these trends claim to be complete models for their data architectures to solve the “everything everywhere all at once” problem. Data teams are confused as to whether they should get on the bandwagon of just one of these trends or pick a combination. First, we describe how data mesh and data fabric could be related.

article thumbnail

Build a multi-Region and highly resilient modern data architecture using AWS Glue and AWS Lake Formation

AWS Big Data

This solution only replicates metadata in the Data Catalog, not the actual underlying data. To have a redundant data lake using Lake Formation and AWS Glue in an additional Region, we recommend replicating the Amazon S3-based storage using S3 replication , S3 sync, aws-s3-copy-sync-using-batch or S3 Batch replication process.