This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Machine learning adds uncertainty. Underneath this uncertainty lies further uncertainty in the development process itself. There are strategies for dealing with all of this uncertainty–starting with the proverb from the early days of Agile: “ do the simplest thing that could possibly work.”
Government executives face several uncertainties as they embark on their journeys of modernization. A pain point tracker (a repository of business, human-centered design and technology issues that inhibit users’ ability to execute critical tasks) captures themes that arise during the datacollection process.
Lowering the entry cost by re-using data and infrastructure already in place for other projects makes trying many different approaches feasible. Fortunately, learning-based projects typically use datacollected for other purposes. . And the problem is not just a matter of too many copies of data.
If you have a user facing product, the data that you had when you prototype the model may be very different from what you actually have in production. This really rewards companies with an experimental culture where they can take intelligent risks and they’re comfortable with those uncertainties.
Amanda went through some of the top considerations, from dataquality, to datacollection, to remembering the people behind the data, to color choices. COVID-19 DataQuality Issues. It’s really hard to make these apples to apples comparisons, as easy as it might seem since the data is so accessible.”.
As a result, concerns of data governance and dataquality were ignored. The direct consequence of bad qualitydata is misinformed decision making based on inaccurate information; the quality of the solutions is driven by the quality of the data. COVID-19 exposes shortcomings in data management.
One is dataquality, cleaning up data, the lack of labelled data. They learned about a lot of process that requires that you get rid of uncertainty. They’re being told they have to embrace uncertainty. How can you trace that all the way back into the datacollection? You know what?
Editor's note : The relationship between reliability and validity are somewhat analogous to that between the notions of statistical uncertainty and representational uncertainty introduced in an earlier post. Measurement challenges Assessing reliability is essentially a process of datacollection and analysis.
We organize all of the trending information in your field so you don't have to. Join 42,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content