Remove Data Collection Remove Experimentation Remove Metadata
article thumbnail

Bringing an AI Product to Market

O'Reilly on Data

Without clarity in metrics, it’s impossible to do meaningful experimentation. AI PMs must ensure that experimentation occurs during three phases of the product lifecycle: Phase 1: Concept During the concept phase, it’s important to determine if it’s even possible for an AI product “ intervention ” to move an upstream business metric.

Marketing 364
article thumbnail

What you need to know about product management for AI

O'Reilly on Data

You might have millions of short videos , with user ratings and limited metadata about the creators or content. Job postings have a much shorter relevant lifetime than movies, so content-based features and metadata about the company, skills, and education requirements will be more important in this case.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

AI adoption in the enterprise 2020

O'Reilly on Data

It seems as if the experimental AI projects of 2019 have borne fruit. The bad news is that AI adopters—much like organizations everywhere—seem to treat data governance as an additive rather than an essential ingredient. This year, about 15% of respondent organizations are not doing anything with AI, down ~20% from our 2019 survey.

article thumbnail

What is a data scientist? A key data analytics role and a lucrative career

CIO Business Intelligence

According to data from Robert Half’s 2021 Technology and IT Salary Guide, the average salary for data scientists, based on experience, breaks down as follows: 25th percentile: $109,000 50th percentile: $129,000 75th percentile: $156,500 95th percentile: $185,750 Data scientist responsibilities.

article thumbnail

Improving Multi-tenancy with Virtual Private Clusters

Cloudera

While this approach provides isolation, it creates another significant challenge: duplication of data, metadata, and security policies, or ‘split-brain’ data lake. Now the admins need to synchronize multiple copies of the data and metadata and ensure that users across the many clusters are not viewing stale information.

article thumbnail

The Lean Analytics Cycle: Metrics > Hypothesis > Experiment > Act

Occam's Razor

We are far too enamored with data collection and reporting the standard metrics we love because others love them because someone else said they were nice so many years ago. Maybe they analyzed the metadata from pictures and found that there was a strong correlation between properties that rented often and expensive camera models.

Metrics 157
article thumbnail

On the Hunt for Patterns: from Hippocrates to Supercomputers

Ontotext

Ever since Hippocrates founded his school of medicine in ancient Greece some 2,500 years ago, writes Hannah Fry in her book Hello World: Being Human in the Age of Algorithms , what has been fundamental to healthcare (as she calls it “the fight to keep us healthy”) was observation, experimentation and the analysis of data.