Remove Data Collection Remove Metadata Remove Predictive Modeling
article thumbnail

6 Case Studies on The Benefits of Business Intelligence And Analytics

datapine

They used the data collected to build a logistic-regression and unsupervised learning models, so as to determine the potential relationship between drivers and outcomes. The gathered data includes everything from customers’ waiting times, peak demand hours, traffic for each city, a driver’s speed during a trip, and much more.

article thumbnail

How to supercharge data exploration with Pandas Profiling

Domino Data Lab

Producing insights from raw data is a time-consuming process. Predictive modeling efforts rely on dataset profiles , whether consisting of summary statistics or descriptive charts. Results become the basis for understanding the solution space (or, ‘the realm of the possible’) for a given modeling task. And the result?

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Of Muffins and Machine Learning Models

Cloudera

We can think of model lineage as the specific combination of data and transformations on that data that create a model. This maps to the data collection, data engineering, model tuning and model training stages of the data science lifecycle. Machine Learning Model Visibility .

article thumbnail

5 Data Governance Mistakes to Avoid

Alation

As firms mature their transformation efforts, applying Artificial Intelligence (AI), machine learning (ML) and Natural Language Processing (NLP) to the data is key to putting it into action quickly and effecitvely. Using bad data, or the incorrect data can generate devastating results. between 2022 and 2029.

article thumbnail

5 Data Governance Mistakes to Avoid

Alation

As firms mature their transformation efforts, applying Artificial Intelligence (AI), machine learning (ML) and Natural Language Processing (NLP) to the data is key to putting it into action quickly and effecitvely. Using bad data, or the incorrect data can generate devastating results. between 2022 and 2029.

article thumbnail

The most valuable AI use cases for business

IBM Big Data Hub

The IBM team is even using generative AI to create synthetic data to build more robust and trustworthy AI models and to stand in for real-world data protected by privacy and copyright laws. These systems can evaluate vast amounts of data to uncover trends and patterns, and to make decisions.

article thumbnail

What Is Embedded Analytics?

Jet Global

Let’s just give our customers access to the data. You’ve settled for becoming a data collection tool rather than adding value to your product. While data exports may satisfy a portion of your customers, there will be many who simply want reports and insights that are available “out of the box.” addresses).