This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
We are excited to announce the acquisition of Octopai , a leading data lineage and catalog platform that provides data discovery and governance for enterprises to enhance their data-driven decision making.
I recently saw an informal online survey that asked users which types of data (tabular, text, images, or “other”) are being used in their organization’s analytics applications. The results showed that (among those surveyed) approximately 90% of enterprise analytics applications are being built on tabular data.
It’s time to consider data-drivenenterprise architecture. The traditional approach to enterprise architecture – the analysis, design, planning and implementation of IT capabilities for the successful execution of enterprise strategy – seems to be missing something … data. That’s right.
1) What Is Data Quality Management? 4) Data Quality Best Practices. 5) How Do You Measure Data Quality? 6) Data Quality Metrics Examples. 7) Data Quality Control: Use Case. 8) The Consequences Of Bad Data Quality. 9) 3 Sources Of Low-Quality Data. 10) Data Quality Solutions: Key Attributes.
We’re dealing with data day in and day out, but if isn’t accurate then it’s all for nothing!” Steve needed a robust and automated metadata management solution as part of his organization’s data governance strategy. Enterprisedata governance. Metadata in data governance.
In this post, we focus on data management implementation options such as accessing data directly in Amazon Simple Storage Service (Amazon S3), using popular data formats like Parquet, or using open table formats like Iceberg. Data management is the foundation of quantitative research.
Enterprise architecture tools are becoming more important than ever. The International Enterprise Architecture Institute (IEAI) defines enterprise architecture (EA) as “the analysis and documentation of an enterprise in its current and future states from an integrated strategy, business and technology perspective.”.
What is Data Modeling? Data modeling is a process that enables organizations to discover, design, visualize, standardize and deploy high-quality data assets through an intuitive, graphical interface. Data models provide visualization, create additional metadata and standardize data design across the enterprise.
Metadata management is key to wringing all the value possible from data assets. However, most organizations don’t use all the data at their disposal to reach deeper conclusions about how to drive revenue, achieve regulatory compliance or accomplish other strategic objectives. What Is Metadata? Harvest data.
We suspected that data quality was a topic brimming with interest. The responses show a surfeit of concerns around data quality and some uncertainty about how best to address those concerns. Key survey results: The C-suite is engaged with data quality. Data quality might get worse before it gets better.
Untapped data, if mined, represents tremendous potential for your organization. While there has been a lot of talk about big data over the years, the real hero in unlocking the value of enterprisedata is metadata , or the data about the data. Metadata Is the Heart of Data Intelligence.
What Is Metadata? Metadata is information about data. A clothing catalog or dictionary are both examples of metadata repositories. Indeed, a popular online catalog, like Amazon, offers rich metadata around products to guide shoppers: ratings, reviews, and product details are all examples of metadata.
And yeah, the real-world relationships among the entities represented in the data had to be fudged a bit to fit in the counterintuitive model of tabular data, but, in trade, you get reliability and speed. Ironically, relational databases only imply relationships between data points by whatever row or column they exist in.
Organization’s cannot hope to make the most out of a data-driven strategy, without at least some degree of metadata-driven automation. The volume and variety of data has snowballed, and so has its velocity. So it’s safe to say that organizations can’t reap the rewards of their data without automation.
The next phase of this transformation requires an intelligent data infrastructure that can bring AI closer to enterprisedata. The challenges of integrating data with AI workflows When I speak with our customers, the challenges they talk about involve integrating their data and their enterprise AI workflows.
Amazon Redshift is a fully managed, AI-powered cloud data warehouse that delivers the best price-performance for your analytics workloads at any scale. It provides a conversational interface where users can submit queries in natural language within the scope of their current data permissions. Your data is not shared across accounts.
Why should you integrate data governance (DG) and enterprise architecture (EA)? Two of the biggest challenges in creating a successful enterprise architecture initiative are: collecting accurate information on application ecosystems and maintaining the information as application ecosystems change.
Amazon Redshift , launched in 2013, has undergone significant evolution since its inception, allowing customers to expand the horizons of data warehousing and SQL analytics. Industry-leading price-performance Amazon Redshift offers up to three times better price-performance than alternative cloud data warehouses.
The business challenges facing organizations today emphasize the value of enterprise architecture (EA) , so the future of EA is closer than you think. See also: What Is Enterprise Architecture? . Data Security & Risk Management. Data Center Consolidation. Data Governance (knowing what data you have and where it is).
erwin released its State of Data Governance Report in February 2018, just a few months before the General Data Protection Regulation (GDPR) took effect. Download Free GDPR Guide | Step By Step Guide to Data Governance for GDPR?. IDC Technology Spotlight, Data Intelligence in Context: Get the report (… it’s free).
Metadata is an important part of data governance, and as a result, most nascent data governance programs are rife with project plans for assessing and documenting metadata. But in many scenarios, it seems that the underlying driver of metadata collection projects is that it’s just something you do for data governance.
The data mesh design pattern breaks giant, monolithic enterprisedata architectures into subsystems or domains, each managed by a dedicated team. DataOps helps the data mesh deliver greater business agility by enabling decentralized domains to work in concert. . But first, let’s define the data mesh design pattern.
Teams need to urgently respond to everything from massive changes in workforce access and management to what-if planning for a variety of grim scenarios, in addition to building and documenting new applications and providing fast, accurate access to data for smart decision-making. Enterprise Architecture & Business Process Modeling.
Third, any commitment to a disruptive technology (including data-intensive and AI implementations) must start with a business strategy. These changes may include requirements drift, data drift, model drift, or concept drift. I suggest that the simplest business strategy starts with answering three basic questions: What?
erwin has once again been positioned as a Leader in the Gartner “2020 Magic Quadrant for Metadata Management Solutions.”. The post erwin Positioned as a Leader in Gartner’s 2020 Magic Quadrant for Metadata Management Solutions for Second Year in a Row appeared first on erwin, Inc.
Enterprise architecture (EA) benefits modern organizations in many ways. It provides a holistic, top down view of structure and systems, making it invaluable in managing the complexities of data-driven business. Once considered solely a function of IT, enterprise architecture has historically operated from an ivory tower.
The Semantic Web, both as a research field and a technology stack, is seeing mainstream industry interest, especially with the knowledge graph concept emerging as a pillar for data well and efficiently managed. And what are the commercial implications of semantic technologies for enterprisedata? Source: tag.ontotext.com.
Enterprises are trying to manage data chaos. They also face increasing regulatory pressure because of global data regulations , such as the European Union’s General Data Protection Regulation (GDPR) and the new California Consumer Privacy Act (CCPA), that went into effect last week on Jan. GDPR: Key Differences.
Data has been the driving force of the decade. Many organizations have tried and failed to become truly “data-driven,” and many organizations will continue to do so. Many organizations have tried and failed to become truly “data-driven,” and many organizations will continue to do so.
AI products are automated systems that collect and learn from data to make user-facing decisions. All you need to know for now is that machine learning uses statistical techniques to give computer systems the ability to “learn” by being trained on existing data. Why AI software development is different.
With the growing emphasis on data, organizations are constantly seeking more efficient and agile ways to integrate their data, especially from a wide variety of applications. In addition, organizations rely on an increasingly diverse array of digital systems, data fragmentation has become a significant challenge.
Amazon DataZone has announced a set of new data governance capabilities—domain units and authorization policies—that enable you to create business unit-level or team-level organization and manage policies according to your business needs. Organizations can adopt different approaches when defining and structuring domains and domain units.
In the data-driven era, CIO’s need a solid understanding of data governance 2.0 … Data governance (DG) is no longer about just compliance or relegated to the confines of IT. Today, data governance needs to be a ubiquitous part of your organization’s culture. Creating a Culture of Data Governance.
Whether the enterprise uses dozens or hundreds of data sources for multi-function analytics, all organizations can run into data governance issues. Bad data governance practices lead to data breaches, lawsuits, and regulatory fines — and no enterprise is immune. . Everyone Fails Data Governance.
As the amount of data grows exponentially, organizations turn to data intelligence to reach deeper conclusions about driving revenue, achieving regulatory compliance and accomplishing other strategic objectives. It’s no secret that data has grown in volume, variety and velocity, with 2.5
Just after launching a focused data management platform for retail customers in March, enterprisedata management vendor Informatica has now released two more industry-specific versions of its Intelligent Data Management Cloud (IDMC) — one for financial services, and the other for health and life sciences.
Business intelligence (BI) analysts transform data into insights that drive business value. The role is becoming increasingly important as organizations move to capitalize on the volumes of data they collect through business intelligence strategies.
Establishing a single, enterprise-wide source of truth? Increasing data quality and accuracy? Why are data catalog use cases so downright… predictable? If you can rattle off the top five or ten enterprisedata catalog use cases in your sleep, this post is an attempt to add a little more color and variety to your data life.
So if you’re going to move from your data from on-premise legacy data stores and warehouse systems to the cloud, you should do it right the first time. And as you make this transition, you need to understand what data you have, know where it is located, and govern it along the way. Then you must bulk load the legacy data.
These surveys helped IDC develop a model that describes the five stages of enterprise recovery , aligning business focus with the economic situation: When the COVID-19 crisis hit, organizations focused on business continuity. When we enter into the next normal, the future enterprise will emerge.
We live in a world of data: there’s more of it than ever before, in a ceaselessly expanding array of forms and locations. Dealing with Data is your window into the ways Data Teams are tackling the challenges of this new world to help their companies and their customers thrive. Employing EnterpriseData Management (EDM).
Like the proverbial man looking for his keys under the streetlight , when it comes to enterprisedata, if you only look at where the light is already shining, you can end up missing a lot. Remember that dark data is the data you have but don’t understand. So how do you find your dark data? Analyze your metadata.
I’m excited to share the results of our new study with Dataversity that examines how data governance attitudes and practices continue to evolve. Defining Data Governance: What Is Data Governance? . 1 reason to implement data governance. Constructing a Digital Transformation Strategy: How Data Drives Digital.
With metadata-driven automation, many DevOps processes can be automated, adding more “horsepower” to increase their speed and accuracy. Data lineage and impact analysis views for ‘data in motion’ also stay up to date with no additional effort. Data Intelligence: Speed and Quality Without Compromise.
We organize all of the trending information in your field so you don't have to. Join 42,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content