article thumbnail

Practical Skills for The AI Product Manager

O'Reilly on Data

AI PMs should enter feature development and experimentation phases only after deciding what problem they want to solve as precisely as possible, and placing the problem into one of these categories. Experimentation: It’s just not possible to create a product by building, evaluating, and deploying a single model.

article thumbnail

88% of AI pilots fail to reach production — but that’s not all on IT

CIO Business Intelligence

The high number of Al POCs but low conversion to production indicates the low level of organizational readiness in terms of data, processes and IT infrastructure, IDCs authors report. And a lot of this panic-driven thinking is what caused a lot of these initiatives, says Ashish Nadkarni, group VP at IDC.

ROI 127
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Escaping POC Purgatory: Evaluation-Driven Development for AI Systems

O'Reilly on Data

Weve seen this across dozens of companies, and the teams that break out of this trap all adopt some version of Evaluation-Driven Development (EDD), where testing, monitoring, and evaluation drive every decision from the start. Two big things: They bring the messiness of the real world into your system through unstructured data.

Testing 168
article thumbnail

Gartner projects major IT spending increases for 2025

CIO Business Intelligence

in 2025, one of the largest percentage increases in this century, and it’s only partially driven by AI. growth this year, with data center spending increasing by nearly 35% in 2024 in anticipation of generative AI infrastructure needs. Data center spending will increase again by 15.5% trillion, builds on its prediction of an 8.2%

IT 133
article thumbnail

How to Build an Experimentation Culture for Data-Driven Product Development

Speaker: Margaret-Ann Seger, Head of Product, Statsig

Experimentation is often seen as an aspirational practice, especially at smaller, fast-moving companies who are strapped for time and resources. So, how can you get your team making decisions in a more data-driven way while continuing to remain lean and maintaining ship velocity? Save your seat for this exclusive webinar today!

article thumbnail

Bringing an AI Product to Market

O'Reilly on Data

It’s often difficult for businesses without a mature data or machine learning practice to define and agree on metrics. Fair warning: if the business lacks metrics, it probably also lacks discipline about data infrastructure, collection, governance, and much more.) Agreeing on metrics. Don’t expect agreement to come simply.

Marketing 364
article thumbnail

The key to operational AI: Modern data architecture

CIO Business Intelligence

From customer service chatbots to marketing teams analyzing call center data, the majority of enterprises—about 90% according to recent data —have begun exploring AI. For companies investing in data science, realizing the return on these investments requires embedding AI deeply into business processes.