Remove Data-driven Remove Experimentation Remove Metrics
article thumbnail

Bringing an AI Product to Market

O'Reilly on Data

The first step in building an AI solution is identifying the problem you want to solve, which includes defining the metrics that will demonstrate whether you’ve succeeded. It sounds simplistic to state that AI product managers should develop and ship products that improve metrics the business cares about. Agreeing on metrics.

Marketing 364
article thumbnail

Escaping POC Purgatory: Evaluation-Driven Development for AI Systems

O'Reilly on Data

Weve seen this across dozens of companies, and the teams that break out of this trap all adopt some version of Evaluation-Driven Development (EDD), where testing, monitoring, and evaluation drive every decision from the start. Two big things: They bring the messiness of the real world into your system through unstructured data.

Testing 168
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Practical Skills for The AI Product Manager

O'Reilly on Data

AI PMs should enter feature development and experimentation phases only after deciding what problem they want to solve as precisely as possible, and placing the problem into one of these categories. Experimentation: It’s just not possible to create a product by building, evaluating, and deploying a single model.

article thumbnail

The Lean Analytics Cycle: Metrics > Hypothesis > Experiment > Act

Occam's Razor

To win in business you need to follow this process: Metrics > Hypothesis > Experiment > Act. We are far too enamored with data collection and reporting the standard metrics we love because others love them because someone else said they were nice so many years ago. That metric is tied to a KPI.

Metrics 157
article thumbnail

How to Build an Experimentation Culture for Data-Driven Product Development

Speaker: Margaret-Ann Seger, Head of Product, Statsig

Experimentation is often seen as an aspirational practice, especially at smaller, fast-moving companies who are strapped for time and resources. So, how can you get your team making decisions in a more data-driven way while continuing to remain lean and maintaining ship velocity? Save your seat for this exclusive webinar today!

article thumbnail

What you need to know about product management for AI

O'Reilly on Data

AI products are automated systems that collect and learn from data to make user-facing decisions. All you need to know for now is that machine learning uses statistical techniques to give computer systems the ability to “learn” by being trained on existing data. Why AI software development is different.

article thumbnail

Do You Need a DataOps Dojo?

DataKitchen

We’ll also discuss building DataOps expertise around the data organization, in a decentralized fashion, using DataOps centers of excellence (COE) or DataOps Dojos. Centralizing analytics helps the organization standardize enterprise-wide measurements and metrics. Test data management and other functions provided ‘as a service’ .

Metrics 243