This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
However, many biomedical researchers lack the expertise to use these advanced data processing techniques. Instead, they often depend on skilled data scientists and engineers who can create automated systems to interpret complex scientific data.
In this day and age, we’re all constantly hearing the terms “big data”, “data scientist”, and “in-memory analytics” being thrown around. Almost all the major software companies are continuously making use of the leading Business Intelligence (BI) and Datadiscovery tools available in the market to take their brand forward.
For example, as manufacturers, we create a knowledge base, but no one can find anything without spending hours searching and browsing through the contents. Or we create a data lake, which quickly degenerates to a data swamp. Coupled with search and multi-modal interaction, gen AI makes a great assistant.
In this day and age, we’re all constantly hearing the terms “big data”, “data scientist”, and “in-memory analytics” being thrown around. Almost all the major software companies are continuously making use of the leading Business Intelligence (BI) and DataDiscovery tools available in the market to take their brand forward.
Knowledge graphs are changing the game A knowledge graph is a data model that uses semantics to represent real-world entities and the relationships between them. It can apply automated reasoning to extract further knowledge and make new connections between different pieces of data. The possibilities are endless!
Organizations are collecting and storing vast amounts of structured and unstructured data like reports, whitepapers, and research documents. By consolidating this information, analysts can discover and integrate data from across the organization, creating valuable data products based on a unified dataset.
It enriched their understanding of the full spectrum of knowledge graph business applications and the technology partner ecosystem needed to turn data into a competitive advantage. Content and data management solutions based on knowledge graphs are becoming increasingly important across enterprises.
It demonstrates how GraphDB and metaphactory work together and how you can employ the platform’s intuitive and out-of-the-box search, visualization and authoring components to empower end users to consume data from your knowledge graph. Data normalization is an essential step in the data preparation process.
Gartner predicts that graph technologies will be used in 80% of data and analytics innovations by 2025, up from 10% in 2021. Several factors are driving the adoption of knowledge graphs. Use Case #1: Customer 360 / Enterprise 360 Customer data is typically spread across multiple applications, departments, and regions.
This is part of Ontotext’s AI-in-Action initiative aimed at enabling data scientists and engineers to benefit from the AI capabilities of our products. Natural Language Query (NLQ) has gained immense popularity due to its ability to empower non-technical individuals to extract data insights just by asking questions in plain language.
There is a confluence of activity—including generative AI models, digital twins, and shared ledger capabilities—that are having a profound impact on helping enterprises meet their goal of becoming datadriven. But until they connect the dots across their data, they will never be able to truly leverage their information assets.
We organize all of the trending information in your field so you don't have to. Join 42,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content