This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Data exploded and became big. Spreadsheets finally took a backseat to actionable and insightful data visualizations and interactive business dashboards. The rise of self-service analytics democratized the data product chain. 1) Data Quality Management (DQM). We all gained access to the cloud.
In at least one way, it was not different, and that was in the continued development of innovations that are inspired by data. This steady march of data-driven innovation has been a consistent characteristic of each year for at least the past decade.
Cities are embracing smart city initiatives to address these challenges, leveraging the Internet of Things (IoT) as the cornerstone for data-driven decision making and optimized urban operations. Raw data collected through IoT devices and networks serves as the foundation for urban intelligence. from 2023 to 2028.
Behind the scenes, data augmented with artificial intelligence deliver insights to help enhance energy efficiency and promote sustainable urban development. For these cities, fortifying Internet of Things (IoT) sensor and device vulnerabilities to combat cyberthreats is a key concern.
In the world of data there are other types of nuanced applications of business analytics that are also actionable – perhaps these are not too different from predictive and prescriptive, but their significance, value, and implementation can be explained and justified differently. This is predictive power discovery.
Modern businesses have vast amounts of data at their fingertips and are acutely aware of how enterprise data strategies positively impact business outcomes. Much potential remains untapped when businesses do not translate their data into actionable insights from the point it is created, eroding the usefulness of data over time. .
Modern businesses have vast amounts of data at their fingertips and are acutely aware of how enterprise data strategies positively impact business outcomes. Much potential remains untapped when businesses do not translate their data into actionable insights from the point it is created, eroding the usefulness of data over time. .
In especially high demand are IT pros with software development, data science and machine learning skills. Government agencies and nonprofits also seek IT talent for environmental data analysis and policy development.
In 2024, data visualization companies play a pivotal role in transforming complex data into captivating narratives. This blog provides an insightful exploration of the leading entities shaping the data visualization landscape. Let’s embark on a journey to uncover the top 10 Data Visualization Companies of 2024.
Data is a key strategic asset for every organization, and every company is a data business at its core. However, in many organizations, data is typically spread across a number of different systems such as software as a service (SaaS) applications, operational databases, and data warehouses.
Asset lifecycle management (ALM) is a data-driven approach that many companies use to care for their assets, maximize their efficiency and increase their profitability. Data management and storage requirements vary widely from country to country and are constantly evolving.
Machine learning, artificial intelligence, data engineering, and architecture are driving the data space. The Strata Data Conferences helped chronicle the birth of big data, as well as the emergence of data science, streaming, and machine learning (ML) as disruptive phenomena. The term “AI,” meanwhile, is No.
We organize all of the trending information in your field so you don't have to. Join 42,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content