This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
If 2023 was the year of AI discovery and 2024 was that of AI experimentation, then 2025 will be the year that organisations seek to maximise AI-driven efficiencies and leverage AI for competitive advantage. Primary among these is the need to ensure the data that will power their AI strategies is fit for purpose.
In the quest to reach the full potential of artificial intelligence (AI) and machine learning (ML), there’s no substitute for readily accessible, high-quality data. If the data volume is insufficient, it’s impossible to build robust ML algorithms. If the data quality is poor, the generated outcomes will be useless.
With AI agents poised to take over significant portions of enterprise workflows, IT leaders will be faced with an increasingly complex challenge: managing them. Analysts say the big three hyperscalers and cloud management vendors are aware of the gap and are working on it.
In our previous article, What You Need to Know About Product Management for AI , we discussed the need for an AI Product Manager. In this article, we shift our focus to the AI Product Manager’s skill set, as it is applied to day to day work in the design, development, and maintenance of AI products. The AI Product Pipeline.
Speaker: Donna Laquidara-Carr, PhD, LEED AP, Industry Insights Research Director at Dodge Construction Network
In today’s construction market, owners, construction managers, and contractors must navigate increasing challenges, from cost management to project delays. Fortunately, digital tools now offer valuable insights to help mitigate these risks. That’s where data-driven construction comes in.
The next phase of this transformation requires an intelligent data infrastructure that can bring AI closer to enterprise data. The challenges of integrating data with AI workflows When I speak with our customers, the challenges they talk about involve integrating their data and their enterprise AI workflows.
1) What Is Data Quality Management? 4) Data Quality Best Practices. 5) How Do You Measure Data Quality? 6) Data Quality Metrics Examples. 7) Data Quality Control: Use Case. 8) The Consequences Of Bad Data Quality. 9) 3 Sources Of Low-Quality Data. 10) Data Quality Solutions: Key Attributes.
The Evolution of Expectations For years, the AI world was driven by scaling laws : the empirical observation that larger models and bigger datasets led to proportionally better performance. Security Letting LLMs make runtime decisions about business logic creates unnecessary risk. Development velocity grinds to a halt.
If you’re already a software product manager (PM), you have a head start on becoming a PM for artificial intelligence (AI) or machine learning (ML). But there’s a host of new challenges when it comes to managing AI projects: more unknowns, non-deterministic outcomes, new infrastructures, new processes and new tools.
CIOs perennially deal with technical debts risks, costs, and complexities. While the impacts of legacy systems can be quantified, technical debt is also often embedded in subtler ways across the IT ecosystem, making it hard to account for the full list of issues and risks.
It provides better data storage, data security, flexibility, improved organizational visibility, smoother processes, extra data intelligence, increased collaboration between employees, and changes the workflow of small businesses and large enterprises to help them make better decisions while decreasing costs.
According to a recent survey by Foundry , nearly all respondents (97%) reported that their organization is impacted by digital friction, defined as the unnecessary effort an employee must exert to use data or technology for work. Managed, on the other hand, it can boost operations, efficiency, and resiliency.
In today’s fast-paced digital environment, enterprises increasingly leverage AI and analytics to strengthen their riskmanagement strategies. By adopting AI-driven approaches, businesses can better anticipate potential threats, make data-informed decisions, and bolster the security of their assets and operations.
Despite AI’s potential to transform businesses, many senior technology leaders find themselves wrestling with unpredictable expenses, uneven productivity gains, and growing risks as AI adoption scales, Gartner said. Gartner’s data revealed that 90% of CIOs cite out-of-control costs as a major barrier to achieving AI success.
CIOs feeling the pressure will likely seek more pragmatic AI applications, platform simplifications, and riskmanagement practices that have short-term benefits while becoming force multipliers to longer-term financial returns. CIOs should consider placing these five AI bets in 2025.
In 2018, I wrote an article asking, “Will your company be valued by its price-to-data ratio?” The premise was that enterprises needed to secure their critical data more stringently in the wake of data hacks and emerging AI processes. Data theft leads to financial losses, reputational damage, and more.
We are excited to announce the acquisition of Octopai , a leading data lineage and catalog platform that provides data discovery and governance for enterprises to enhance their data-driven decision making.
Weve seen this across dozens of companies, and the teams that break out of this trap all adopt some version of Evaluation-Driven Development (EDD), where testing, monitoring, and evaluation drive every decision from the start. Two big things: They bring the messiness of the real world into your system through unstructured data.
Infor offers applications for enterprise resource planning, supply chain management, customer relationship management and human capital management, among others. And its GenAI knowledge hub uses retrieval-augmented generation to provide immediate access to knowledge, potentially from multiple data sources.
Call it survival instincts: Risks that can disrupt an organization from staying true to its mission and accomplishing its goals must constantly be surfaced, assessed, and either mitigated or managed. While security risks are daunting, therapists remind us to avoid overly stressing out in areas outside our control.
Then in November, the company revealed its Azure AI Agent Service, a fully-managed service that lets enterprises build, deploy and scale agents quickly. Before that, though, ServiceNow announced its AI Agents offering in September, with the first use cases for customer service management and IT service management, available in November.
The high number of Al POCs but low conversion to production indicates the low level of organizational readiness in terms of data, processes and IT infrastructure, IDCs authors report. IT managers are leveraging this trend to try to get greenlights for broader technology efforts, Andersen says. Its going to vary dramatically.
Still, CIOs have reason to drive AI capabilities and employee adoption, as only 16% of companies are reinvention ready with fully modernized data foundations and end-to-end platform integration to support automation across most business processes, according to Accenture. These reinvention-ready organizations have 2.5
AI systems can analyze vast amounts of data in real time, identifying potential threats with speed and accuracy. Companies like CrowdStrike have documented that their AI-driven systems can detect threats in under one second. Thats the potential of AI-driven automated incident response.
For CIOs and IT leaders, this means improved operational efficiency, data-driven decision making and accelerated innovation. Traditionally, the manager from the change advisory board (CAB) coordinates the teams and stakeholders, makes final decisions to approve or reject proposed changes, and directs the implementation of changes.
From customer service chatbots to marketing teams analyzing call center data, the majority of enterprises—about 90% according to recent data —have begun exploring AI. For companies investing in data science, realizing the return on these investments requires embedding AI deeply into business processes.
In a recent interview with Jyoti Lalchandani, IDCs Group Vice President and Regional Managing Director for the Middle East, Turkey, and Africa (META), we explore the key trends and technologies that will shape the future of the Middle East and the challenges organizations will face in their digital transformation journey.
In today’s data-rich environment, the challenge isn’t just collecting data but transforming it into actionable insights that drive strategic decisions. For organizations, this means adopting a data-driven approach—one that replaces gut instinct with factual evidence and predictive insights. What is BI Consulting?
As a business executive who has led ventures in areas such as space technology or data security and helped bridge research and industry, Ive seen first-hand how rapidly deep tech is moving from the lab into the heart of business strategy. The takeaway is clear: embrace deep tech now, or risk being left behind by those who do.
A lot of the current focus with AI projects is to cut costs and drive efficiencies, but organizations also need to think about longer-term innovation, says Taylor Brown, co-founder and COO of Fivetran, vendor of a datamanagement platform. If these risks are not addressed, the business is at a disadvantage,” she says.
It demands a robust foundation of consistent, high-quality data across all retail channels and systems. Enter Akeneo, a global leader in Product Experience Management (PXM) and AI tech stack solutions. AI has the power to revolutionise retail, but success hinges on the quality of the foundation it is built upon: data.
GRC certifications validate the skills, knowledge, and abilities IT professionals have to manage governance, risk, and compliance (GRC) in the enterprise. Enter the need for competent governance, risk and compliance (GRC) professionals. What are GRC certifications? Why are GRC certifications important?
I recently saw an informal online survey that asked users which types of data (tabular, text, images, or “other”) are being used in their organization’s analytics applications. The results showed that (among those surveyed) approximately 90% of enterprise analytics applications are being built on tabular data.
Rapid technological evolution means it’s now possible to use accessible and intuitive data-driven tools to our advantage. We’ve delved into the impact of big data in healthcare. Without healthcare data reporting, it’s unlikely healthcare institutions will ever reduce these figures to an acceptable level on a sustainable basis.
Nor are building data pipelines and deploying ML systems well understood. That doesn’t mean we aren’t seeing tools to automate various aspects of software engineering and data science. We’ve also seen (and featured at O’Reilly’s AI Conference) Snorkel , an ML-driven tool for automated data labeling and synthetic data generation.
Real-time data streaming and event processing are critical components of modern distributed systems architectures. Apache Kafka has emerged as a leading platform for building real-time data pipelines and enabling asynchronous communication between microservices and applications.
One of the world’s largest risk advisors and insurance brokers launched a digital transformation five years ago to better enable its clients to navigate the political, social, and economic waves rising in the digital information age.
One of the sessions I sat in at UKISUG Connect 2024 covered a real-world example of datamanagement using a solution from Bluestonex Consulting , based on the SAP Business Technology Platform (SAP BTP). Impact of Errors : Erroneous data posed immediate risks to operations and long-term damage to customer trust.
The evolution from basic task automation platforms to advanced task orchestration and management marks a milestone in the journey toward Intelligent Automation. Enhanced analytics driven by AI can identify patterns and trends, allowing enterprises to better predict future business needs.
Whether driven by my score, or by their own firsthand experience, the doctors sent me straight to the neonatal intensive care ward, where I spent my first few days. And yet a number or category label that describes a human life is not only machine-readable data. Numbers like that typically mean a baby needs help.
The Core Responsibilities of the AI Product Manager. Product Managers are responsible for the successful development, testing, release, and adoption of a product, and for leading the team that implements those milestones. Product managers for AI must satisfy these same responsibilities, tuned for the AI lifecycle.
A modern data and artificial intelligence (AI) platform running on scalable processors can handle diverse analytics workloads and speed data retrieval, delivering deeper insights to empower strategic decision-making. They are often unable to handle large, diverse data sets from multiple sources.
It’s also the data source for our annual usage study, which examines the most-used topics and the top search terms. [1]. This year’s growth in Python usage was buoyed by its increasing popularity among data scientists and machine learning (ML) and artificial intelligence (AI) engineers. Security is surging. to be wary of.
Artificial intelligence for IT operations (AIOps) solutions help manage the complexity of IT systems and drive outcomes like increasing system reliability and resilience, improving service uptime, and proactively detecting and/or preventing issues from happening in the first place. These challenges drive the need for observability and AIOps.
We organize all of the trending information in your field so you don't have to. Join 42,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content