This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
In this post, we focus on data management implementation options such as accessing data directly in Amazon Simple Storage Service (Amazon S3), using popular data formats like Parquet, or using open table formats like Iceberg. Data management is the foundation of quantitative research.
Open table formats are emerging in the rapidly evolving domain of big data management, fundamentally altering the landscape of data storage and analysis. By providing a standardized framework for data representation, open table formats break down data silos, enhance data quality, and accelerate analytics at scale.
In the era of big data, data lakes have emerged as a cornerstone for storing vast amounts of raw data in its native format. They support structured, semi-structured, and unstructured data, offering a flexible and scalable environment for data ingestion from multiple sources.
The next phase of this transformation requires an intelligent data infrastructure that can bring AI closer to enterprise data. The challenges of integrating data with AI workflows When I speak with our customers, the challenges they talk about involve integrating their data and their enterprise AI workflows.
With this new instance family, OpenSearch Service uses OpenSearch innovation and AWS technologies to reimagine how data is indexed and stored in the cloud. Today, customers widely use OpenSearch Service for operational analytics because of its ability to ingest high volumes of data while also providing rich and interactive analytics.
Customer relationship management (CRM) platforms are very reliant on big data. As these platforms become more widely used, some of the data resources they depend on become more stretched. CRM providers need to find ways to address the technical debt problem they are facing through new big data initiatives. Unused assets.
Enterprises and organizations across the globe want to harness the power of data to make better decisions by putting data at the center of every decision-making process. However, throughout history, data services have held dominion over their customers’ data.
With the growing emphasis on data, organizations are constantly seeking more efficient and agile ways to integrate their data, especially from a wide variety of applications. In addition, organizations rely on an increasingly diverse array of digital systems, data fragmentation has become a significant challenge.
Businesses are constantly evolving, and data leaders are challenged every day to meet new requirements. Customers are using AWS and Snowflake to develop purpose-built data architectures that provide the performance required for modern analytics and artificial intelligence (AI) use cases.
In todays data-driven world, tracking and analyzing changes over time has become essential. As organizations process vast amounts of data, maintaining an accurate historical record is crucial. History management in data systems is fundamental for compliance, business intelligence, data quality, and time-based analysis.
Organizations with legacy, on-premises, near-real-time analytics solutions typically rely on self-managed relational databases as their data store for analytics workloads. Near-real-time streaming analytics captures the value of operational data and metrics to provide new insights to create business opportunities.
If you also needed to preserve the history of DAG runs, you had to take a backup of your metadata database and then restore that backup on the newly created environment. Amazon MWAA manages the entire upgrade process, from provisioning new Apache Airflow versions to upgrading the metadata database.
We’re living in the age of real-time data and insights, driven by low-latency data streaming applications. The volume of time-sensitive data produced is increasing rapidly, with different formats of data being introduced across new businesses and customer use cases.
Best practice blends the application of advanced data models with the experience, intuition and knowledge of sales management, to deeply understand the sales pipeline. For this partnership to work, it requires sales leaders who really care about data and are open to analysts’ advice about how to use the Salesforce data they generate.
In OpenSearch Service, you can deploy data nodes to store your data and respond to indexing and search requests, you can also deploy dedicated cluster manager nodes to manage and orchestrate the cluster. When you use OpenSearch Service, you create indexes to hold your data and specify partitioning and replication for those indexes.
With data becoming the driving force behind many industries today, having a modern data architecture is pivotal for organizations to be successful. In this post, we describe Orca’s journey building a transactional data lake using Amazon Simple Storage Service (Amazon S3), Apache Iceberg, and AWS Analytics.
INSITE applications are in general data intensive. They ingest and transform large volumes of data in different formats and processing patterns (such as batch and near real time) from various sources internal and external to Amazon. To enable and meet these requirements, GTTS built its own data platform.
This is a guest post by Miguel Chin, Data Engineering Manager at OLX Group and David Greenshtein, Specialist Solutions Architect for Analytics, AWS. We live in a data-producing world, and as companies want to become datadriven, there is the need to analyze more and more data.
The Analytics specialty practice of AWS Professional Services (AWS ProServe) helps customers across the globe with modern data architecture implementations on the AWS Cloud. In this post, we discuss a common use case in relation to operational data processing and the solution we built using Apache Hudi and AWS Glue.
In fact, according to the Identity Theft Resource Center (ITRC) Annual Data Breach Report , there were 2,365 cyber attacks in 2023 with more than 300 million victims, and a 72% increase in data breaches since 2021. However, there is a fundamental challenge standing in the way of being successful: data.
This data is used in procuring devices’ inventory to meet Amazon customers’ demands. With data volumes exhibiting a double-digit percentage growth rate year on year and the COVID pandemic disrupting global logistics in 2021, it became more critical to scale and generate near-real-time data.
In this post, I will demonstrate how to use the Cloudera Data Platform (CDP) and its streaming solutions to set up reliable data exchange in modern applications between high-scale microservices, and ensure that the internal state will stay consistent even under the highest load.
This allows you to simplify security and governance over transactional data lakes by providing access controls at table-, column-, and row-level permissions with your Apache Spark jobs. Many large enterprise companies seek to use their transactional data lake to gain insights and improve decision-making.
How dbt Core aids data teams test, validate, and monitor complex data transformations and conversions Photo by NASA on Unsplash Introduction dbt Core, an open-source framework for developing, testing, and documenting SQL-based data transformations, has become a must-have tool for modern data teams as the complexity of data pipelines grows.
FMs are multimodal; they work with different data types such as text, video, audio, and images. Large language models (LLMs) are a type of FM and are pre-trained on vast amounts of text data and typically have application uses such as text generation, intelligent chatbots, or summarization.
There was a time when most CIOs would never consider putting their crown jewels — AKA customer data and associated analytics — into the cloud. And what must organizations overcome to succeed at cloud data warehousing ? What Are the Biggest Drivers of Cloud Data Warehousing? The cloud is no longer synonymous with risk.
To build a data-driven business, it is important to democratize enterprise data assets in a data catalog. With a unified data catalog, you can quickly search datasets and figure out data schema, data format, and location. For metadata read/write, Flink has the catalog interface.
In this post, we share part of the journey that Jumia took with AWS Professional Services to modernize its data platform that ran under a Hadoop distribution to AWS serverless based solutions. These phases are: data orchestration, data migration, data ingestion, data processing, and data maintenance.
What Is Data Intelligence? Data intelligence is a system to deliver trustworthy, reliable data. It includes intelligence about data, or metadata. IDC coined the term, stating, “data intelligence helps organizations answer six fundamental questions about data.” Why do we have data?
In fact, according to the Identity Theft Resource Center (ITRC) Annual Data Breach Report , there were 2,365 cyber attacks in 2023 with more than 300 million victims, and a 72% increase in data breaches since 2021. However, there is a fundamental challenge standing in the way of being successful: data.
To optimize their security operations, organizations are adopting modern approaches that combine real-time monitoring with scalable data analytics. They are using data lake architectures and Apache Iceberg to efficiently process large volumes of security data while minimizing operational overhead.
Data lakes were originally designed to store large volumes of raw, unstructured, or semi-structured data at a low cost, primarily serving big data and analytics use cases. By using features like Icebergs compaction, OTFs streamline maintenance, making it straightforward to manage object and metadata versioning at scale.
What is data lineage? Data lineage traces data’s origin, history, and movement through various processing, storage, and analysis stages. It is used to understand the provenance of data and how it is transformed and to identify potential errors or issues. What about DataOps Observability? How does it compare?
We organize all of the trending information in your field so you don't have to. Join 42,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content