Remove Data-driven Remove Modeling Remove Risk
article thumbnail

To understand the risks posed by AI, follow the money

O'Reilly on Data

Others retort that large language models (LLMs) have already reached the peak of their powers. It’s difficult to argue with David Collingridge’s influential thesis that attempting to predict the risks posed by new technologies is a fool’s errand. However, there is one class of AI risk that is generally knowable in advance.

Risk 313
article thumbnail

Build a strong data foundation for AI-driven business growth

CIO Business Intelligence

In the quest to reach the full potential of artificial intelligence (AI) and machine learning (ML), there’s no substitute for readily accessible, high-quality data. If the data volume is insufficient, it’s impossible to build robust ML algorithms. If the data quality is poor, the generated outcomes will be useless.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Beyond “Prompt and Pray”

O'Reilly on Data

The Evolution of Expectations For years, the AI world was driven by scaling laws : the empirical observation that larger models and bigger datasets led to proportionally better performance. This fueled a belief that simply making models bigger would solve deeper issues like accuracy, understanding, and reasoning.

article thumbnail

7 types of tech debt that could cripple your business

CIO Business Intelligence

CIOs perennially deal with technical debts risks, costs, and complexities. While the impacts of legacy systems can be quantified, technical debt is also often embedded in subtler ways across the IT ecosystem, making it hard to account for the full list of issues and risks.

Risk 123
article thumbnail

Escaping POC Purgatory: Evaluation-Driven Development for AI Systems

O'Reilly on Data

Weve seen this across dozens of companies, and the teams that break out of this trap all adopt some version of Evaluation-Driven Development (EDD), where testing, monitoring, and evaluation drive every decision from the start. Two big things: They bring the messiness of the real world into your system through unstructured data.

Testing 174
article thumbnail

AI & the enterprise: protect your data, protect your enterprise value

CIO Business Intelligence

In 2018, I wrote an article asking, “Will your company be valued by its price-to-data ratio?” The premise was that enterprises needed to secure their critical data more stringently in the wake of data hacks and emerging AI processes. Data theft leads to financial losses, reputational damage, and more.

article thumbnail

12 Cloud Computing Risks & Challenges Businesses Are Facing In These Days

datapine

It provides better data storage, data security, flexibility, improved organizational visibility, smoother processes, extra data intelligence, increased collaboration between employees, and changes the workflow of small businesses and large enterprises to help them make better decisions while decreasing costs.

Risk 237