Remove Data-driven Remove Risk Remove Strategy
article thumbnail

Business Strategies for Deploying Disruptive Tech: Generative AI and ChatGPT

Rocket-Powered Data Science

Third, any commitment to a disruptive technology (including data-intensive and AI implementations) must start with a business strategy. I suggest that the simplest business strategy starts with answering three basic questions: What? These changes may include requirements drift, data drift, model drift, or concept drift.

Strategy 290
article thumbnail

12 Cloud Computing Risks & Challenges Businesses Are Facing In These Days

datapine

It provides better data storage, data security, flexibility, improved organizational visibility, smoother processes, extra data intelligence, increased collaboration between employees, and changes the workflow of small businesses and large enterprises to help them make better decisions while decreasing costs.

Risk 237
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

To understand the risks posed by AI, follow the money

O'Reilly on Data

It’s difficult to argue with David Collingridge’s influential thesis that attempting to predict the risks posed by new technologies is a fool’s errand. However, there is one class of AI risk that is generally knowable in advance. It is a predictable economic risk. Amazon’s advertising business is a case in point.

Risk 226
article thumbnail

It’s 2025. Are your data strategies strong enough to de-risk AI adoption?

CIO Business Intelligence

If 2023 was the year of AI discovery and 2024 was that of AI experimentation, then 2025 will be the year that organisations seek to maximise AI-driven efficiencies and leverage AI for competitive advantage. Primary among these is the need to ensure the data that will power their AI strategies is fit for purpose.

Risk 107
article thumbnail

The Ultimate Guide to Modern Data Quality Management (DQM) For An Effective Data Quality Control Driven by The Right Metrics

datapine

1) What Is Data Quality Management? 4) Data Quality Best Practices. 5) How Do You Measure Data Quality? 6) Data Quality Metrics Examples. 7) Data Quality Control: Use Case. 8) The Consequences Of Bad Data Quality. 9) 3 Sources Of Low-Quality Data. 10) Data Quality Solutions: Key Attributes.

article thumbnail

5 IT risks CIOs should be paranoid about

CIO Business Intelligence

Call it survival instincts: Risks that can disrupt an organization from staying true to its mission and accomplishing its goals must constantly be surfaced, assessed, and either mitigated or managed. While security risks are daunting, therapists remind us to avoid overly stressing out in areas outside our control.

Risk 142
article thumbnail

Migration Guidelines for Data-Driven Ecommerce Companies

Smart Data Collective

Data-driven ecommerce companies have a strong advantage over their competitors. As we stated before, data-driven marketing strategies are extremely valuable for ecommerce companies. What kind of ROI can big data offer for the ecommerce sector? What data does your online store need to transfer?