Remove Data Enablement Remove Data Lake Remove Data Warehouse
article thumbnail

What is data architecture? A framework to manage data

CIO Business Intelligence

Beyond breaking down silos, modern data architectures need to provide interfaces that make it easy for users to consume data using tools fit for their jobs. Data must be able to freely move to and from data warehouses, data lakes, and data marts, and interfaces must make it easy for users to consume that data.

article thumbnail

Centralize Your Data Processes With a DataOps Process Hub

DataKitchen

Cloud computing has made it much easier to integrate data sets, but that’s only the beginning. Creating a data lake has become much easier, but that’s only ten percent of the job of delivering analytics to users. It often takes months to progress from a data lake to the final delivery of insights.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Amazon Redshift announcements at AWS re:Invent 2023 to enable analytics on all your data

AWS Big Data

In 2013, Amazon Web Services revolutionized the data warehousing industry by launching Amazon Redshift , the first fully-managed, petabyte-scale, enterprise-grade cloud data warehouse. Amazon Redshift made it simple and cost-effective to efficiently analyze large volumes of data using existing business intelligence tools.

article thumbnail

The Future of the Data Lakehouse – Open

CIO Business Intelligence

Cloudera customers run some of the biggest data lakes on earth. These lakes power mission critical large scale data analytics, business intelligence (BI), and machine learning use cases, including enterprise data warehouses. On data warehouses and data lakes.

article thumbnail

The Future of the Data Lakehouse – Open

Cloudera

Cloudera customers run some of the biggest data lakes on earth. These lakes power mission critical large scale data analytics, business intelligence (BI), and machine learning use cases, including enterprise data warehouses. On data warehouses and data lakes.

article thumbnail

How DataOps is Transforming Commercial Pharma Analytics

DataKitchen

New data is shared with users by updating reporting schema several times a day. The architecture takes purpose-built data warehouses /marts and other forms of aggregation and star views tailored to analyst requirements. The DataOps Platform does not replace a data lake or the data hub.

Analytics 246
article thumbnail

DataOps For Business Analytics Teams

DataKitchen

There’s a recent trend toward people creating data lake or data warehouse patterns and calling it data enablement or a data hub. DataOps expands upon this approach by focusing on the processes and workflows that create data enablement and business analytics.