Remove Data Enablement Remove Data Warehouse Remove Machine Learning
article thumbnail

What is data architecture? A framework to manage data

CIO Business Intelligence

Beyond breaking down silos, modern data architectures need to provide interfaces that make it easy for users to consume data using tools fit for their jobs. Data must be able to freely move to and from data warehouses, data lakes, and data marts, and interfaces must make it easy for users to consume that data.

article thumbnail

Amazon Redshift announcements at AWS re:Invent 2023 to enable analytics on all your data

AWS Big Data

In 2013, Amazon Web Services revolutionized the data warehousing industry by launching Amazon Redshift , the first fully-managed, petabyte-scale, enterprise-grade cloud data warehouse. Amazon Redshift made it simple and cost-effective to efficiently analyze large volumes of data using existing business intelligence tools.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

The Future of the Data Lakehouse – Open

CIO Business Intelligence

Cloudera customers run some of the biggest data lakes on earth. These lakes power mission critical large scale data analytics, business intelligence (BI), and machine learning use cases, including enterprise data warehouses. On data warehouses and data lakes.

article thumbnail

The Future of the Data Lakehouse – Open

Cloudera

Cloudera customers run some of the biggest data lakes on earth. These lakes power mission critical large scale data analytics, business intelligence (BI), and machine learning use cases, including enterprise data warehouses. On data warehouses and data lakes.

article thumbnail

Introducing generative AI upgrades for Apache Spark in AWS Glue (preview)

AWS Big Data

Organizations run millions of Apache Spark applications each month on AWS, moving, processing, and preparing data for analytics and machine learning. Data practitioners need to upgrade to the latest Spark releases to benefit from performance improvements, new features, bug fixes, and security enhancements.

article thumbnail

Introducing watsonx: The future of AI for business

IBM Big Data Hub

After some impressive advances over the past decade, largely thanks to the techniques of Machine Learning (ML) and Deep Learning , the technology seems to have taken a sudden leap forward. It helps facilitate the entire data and AI lifecycle, from data preparation to model development, deployment and monitoring.

article thumbnail

How to rule your data world: The role of data governance

BI-Survey

With the growing interconnectedness of people, companies and devices, we are now accumulating increasing amounts of data from a growing variety of channels. New data (or combinations of data) enable innovative use cases and assist in optimizing internal processes.