This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Organizations can’t afford to mess up their datastrategies, because too much is at stake in the digital economy. How enterprises gather, store, cleanse, access, and secure their data can be a major factor in their ability to meet corporate goals. Here are some datastrategy mistakes IT leaders would be wise to avoid.
There is, however, another barrier standing in the way of their ambitions: data readiness. Strong datastrategies de-risk AI adoption, removing barriers to performance. AI thrives on clean, contextualised, and accessible data.
You may already have a formal DataGovernance program in place. Or … you are presently going through the process of trying to convince your Senior Leadership or stakeholders that a formal DataGovernance program is necessary. Maybe you are going through the process of convincing the stakeholders that Data […].
Ensuring dataquality is an important aspect of data management and these days, DBAs are increasingly being called upon to deal with the quality of the data in their database systems more than ever before. The importance of qualitydata cannot be overstated.
Rapid advancements in artificial intelligence (AI), particularly generative AI are putting more pressure on analytics and IT leaders to get their houses in order when it comes to datastrategy and data management. But the enthusiasm must be tempered by the need to put data management and datagovernance in place.
What is datagovernance and how do you measure success? Datagovernance is a system for answering core questions about data. It begins with establishing key parameters: What is data, who can use it, how can they use it, and why? Why is your datagovernancestrategy failing?
The first published datagovernance framework was the work of Gwen Thomas, who founded the DataGovernance Institute (DGI) and put her opus online in 2003. They already had a technical plan in place, and I helped them find the right size and structure of an accompanying datagovernance program.
Data is your generative AI differentiator, and a successful generative AI implementation depends on a robust datastrategy incorporating a comprehensive datagovernance approach. Datagovernance is a critical building block across all these approaches, and we see two emerging areas of focus.
Data and data management processes are everywhere in the organization so there is a growing need for a comprehensive view of business objects and data. It is therefore vital that data is subject to some form of overarching control, which should be guided by a datastrategy.
1 In this article, I will apply it to the topic of dataquality. I will do so by comparing two butterflies, each that represent a common use of dataquality: firstly and most commonly in situ for existing systems, and secondly for use […]. We know the phrase, “Beauty is in the eye of the beholder.”1
The purpose of this article is to provide a model to conduct a self-assessment of your organization’s data environment when preparing to build your DataGovernance program. Take the […].
In our last blog , we delved into the seven most prevalent data challenges that can be addressed with effective datagovernance. Today we will share our approach to developing a datagovernance program to drive data transformation and fuel a data-driven culture.
Data is everywhere! But can you find the data you need? What can be done to ensure the quality of the data? How can you show the value of investing in data? Can you trust it when you get it? These are not new questions, but many people still do not know how to practically […].
It has been eight years plus since the first edition of my book, Non-Invasive DataGovernance: The Path of Least Resistance and Greatest Success, was published by long-time TDAN.com contributor, Steve Hoberman, and his publishing company Technics Publications. That seems like a long time ago.
AI a primary driver in IT modernization and data mobility AI’s demand for data requires businesses to have a secure and accessible datastrategy. Data security, dataquality, and datagovernance still raise warning bells Data security remains a top concern.
Organizations that have implemented DataGovernance programs, or Information Governance, Data/Information Management or Records Management programs will be the first to tell you that these data disciplines are not easy to operationalize. Data Management requires that the organization care for data as an asset.
Organizations faced with the delivery of formal DataGovernance or Information Governance programs recognize that there are several challenges they will face when getting started and as the program is operationalized. The challenges are not the same for all organizations.
That’s according to a recent report based on a survey of CDOs by AWS in conjunction with the Chief Data Officer and Information Quality (CDOIQ) Symposium. The CDO position first gained momentum around 2008, to ensure dataquality and transparency to comply with regulations following the housing credit crisis of that era.
Poor dataquality is one of the top barriers faced by organizations aspiring to be more data-driven. Ill-timed business decisions and misinformed business processes, missed revenue opportunities, failed business initiatives and complex data systems can all stem from dataquality issues.
A Gartner Marketing survey found only 14% of organizations have successfully implemented a C360 solution, due to lack of consensus on what a 360-degree view means, challenges with dataquality, and lack of cross-functional governance structure for customer data.
The third and final part of the Non-Invasive DataGovernance Framework details the breakdown of components by level, providing considerations for what must be included at the intersections. The squares are completed with nouns and verbs that provide direction for meaningful discussions about how the program will be set up and operate.
They’re spending a lot of time on things like dataquality, data management, things that might be tactical, helping with operational aspects of IT. Organizations are still investing in data and analytics functions. million, and 44% said their data and analytics teams increased in size over the past year.
Chief data officer job description. The CDO oversees a range of data-related functions that may include data management, ensuring dataquality, and creating datastrategy. They may also be responsible for data analytics and business intelligence — the process of drawing valuable insights from data.
As someone deeply involved in shaping datastrategy, governance and analytics for organizations, Im constantly working on everything from defining data vision to building high-performing data teams. My work centers around enabling businesses to leverage data for better decision-making and driving impactful change.
If storage costs are escalating in a particular area, you may have found a good source of dark data. If you’ve been properly managing your metadata as part of a broader datagovernance policy, you can use metadata management explorers to reveal silos of dark data in your landscape. Analyze your metadata. Create a catalog.
Successful selling has always been about volume and quality, says Jonathan Lister, COO of Vidyard. Align datastrategies to unlock gen AI value for marketing initiatives Using AI to improve sales metrics is a good starting point for ensuring productivity improvements have near-term financial impact.
If you are just starting out and feel overwhelmed by all the various definitions, explanations, and interpretations of datagovernance, don’t be alarmed. Even well-seasoned datagovernance veterans can struggle with the definition and explanation of what they do day to day.
The state of datagovernance is evolving as organizations recognize the significance of managing and protecting their data. With stricter regulations and greater demand for data-driven insights, effective datagovernance frameworks are critical. What is a data architect?
The reversal from information scarcity to information abundance and the shift from the primacy of entities to the primacy of interactions has resulted in an increased burden for the data involved in those interactions to be trustworthy.
The rise of datastrategy. There’s a renewed interest in reflecting on what can and should be done with data, how to accomplish those goals and how to check for datastrategy alignment with business objectives. The evolution of a multi-everything landscape, and what that means for datastrategy.
The role of data products has become pivotal, driving organizations towards insightful decision-making and competitive advantage. However, ensuring the achievement of these data products demands the strategic integration of Non-Invasive DataGovernance (NIDG). Central to this cooperation is the […]
Data gathering and use pervades almost every business function these days — and it’s widely acknowledged that businesses with a clear strategy around data are best placed to succeed in competitive, challenging markets such as defence. What is a datastrategy? Why is a datastrategy important?
With generative AI requiring organizations to re-evaluate their datastrategies, CDAOs and chief data officers need to step up as leaders and demonstrate business value beyond their standard data management and governance functions, Gartner advises. “To
In our last blog , we introduced DataGovernance: what it is and why it is so important. In this blog, we will explore the challenges that organizations face as they start their governance journey. Organizations have long struggled with data management and understanding data in a complex and ever-growing data landscape.
Top Down vs. Bottom Up Have you heard the terms “top-down” or “bottom-up” associated with approaches to DataGovernance? If so, do you think top down is the only way to execute your DataGovernance Program?
What is your organization doing to protect the value of your data? A strong datagovernancestrategy helps ensure that your data is usable, accessible and protected, guaranteeing trust in the quality and consistency of the data. It involves establishing methods, processes and roles.
This market is growing as more businesses discover the benefits of investing in big data to grow their businesses. Unfortunately, some business analytics strategies are poorly conceptualized. One of the biggest issues pertains to dataquality. Data cleansing and its purpose.
Yes, let’s talk about datagovernance, that thing we love to hate. I just attended the 17th Annual Chief Data Officer and Information Quality Symposium in July, and there, I heard many creative suggestions for renaming datagovernance.
This post dives into the technical details, highlighting the robust datagovernance framework that enables ease of access to qualitydata using Amazon DataZone. The first section of this post discusses how we aligned the technical design of the data solution with the datastrategy of Volkswagen Autoeuropa.
And, while change at large organisations is tough, data leaders would be wise to reframe such transformations as business opportunities rather than burdens. I raised the Cambridge Analytica Scandal and pointed out how it is often only when these stories hit the news that people question the ethics behind how companies are using data.
We organize all of the trending information in your field so you don't have to. Join 42,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content