Remove Data Governance Remove Data Quality Remove Enterprise
article thumbnail

The state of data quality in 2020

O'Reilly on Data

We suspected that data quality was a topic brimming with interest. The responses show a surfeit of concerns around data quality and some uncertainty about how best to address those concerns. Key survey results: The C-suite is engaged with data quality. Data quality might get worse before it gets better.

article thumbnail

AI & the enterprise: protect your data, protect your enterprise value

CIO Business Intelligence

In 2018, I wrote an article asking, “Will your company be valued by its price-to-data ratio?” The premise was that enterprises needed to secure their critical data more stringently in the wake of data hacks and emerging AI processes. Data theft leads to financial losses, reputational damage, and more.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

When is data too clean to be useful for enterprise AI?

CIO Business Intelligence

Once the province of the data warehouse team, data management has increasingly become a C-suite priority, with data quality seen as key for both customer experience and business performance. But along with siloed data and compliance concerns , poor data quality is holding back enterprise AI projects.

article thumbnail

AI adoption in the enterprise 2020

O'Reilly on Data

The update sheds light on what AI adoption looks like in the enterprise— hint: deployments are shifting from prototype to production—the popularity of specific techniques and tools, the challenges experienced by adopters, and so on. By contrast, AI adopters are about one-third more likely to cite problems with missing or inconsistent data.

article thumbnail

Partner Webinar: A Framework for Building Data Mesh Architecture

Speaker: Jeremiah Morrow, Nicolò Bidotti, and Achille Barbieri

Data teams in large enterprise organizations are facing greater demand for data to satisfy a wide range of analytic use cases. Yet they are continually challenged with providing access to all of their data across business units, regions, and cloud environments.

article thumbnail

The Ultimate Guide to Modern Data Quality Management (DQM) For An Effective Data Quality Control Driven by The Right Metrics

datapine

1) What Is Data Quality Management? 4) Data Quality Best Practices. 5) How Do You Measure Data Quality? 6) Data Quality Metrics Examples. 7) Data Quality Control: Use Case. 8) The Consequences Of Bad Data Quality. 9) 3 Sources Of Low-Quality Data.

article thumbnail

Bigeye Enable Monitoring, Quality and Lineage of Data

David Menninger's Analyst Perspectives

Maintaining quality and trust is a perennial data management challenge, the importance of which has come into sharper focus in recent years thanks to the rise of artificial intelligence (AI).  With the aim of rectifying that situation, Bigeye’s founders set out to build a business around data observability.