Remove Data Governance Remove Data Quality Remove Risk
article thumbnail

It’s 2025. Are your data strategies strong enough to de-risk AI adoption?

CIO Business Intelligence

Lack of oversight establishes a different kind of risk, with shadow IT posing significant security threats to organisations. Strong data strategies de-risk AI adoption, removing barriers to performance. AI thrives on clean, contextualised, and accessible data.

Risk 111
article thumbnail

The Ultimate Guide to Modern Data Quality Management (DQM) For An Effective Data Quality Control Driven by The Right Metrics

datapine

1) What Is Data Quality Management? 4) Data Quality Best Practices. 5) How Do You Measure Data Quality? 6) Data Quality Metrics Examples. 7) Data Quality Control: Use Case. 8) The Consequences Of Bad Data Quality. 9) 3 Sources Of Low-Quality Data.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

7 types of tech debt that could cripple your business

CIO Business Intelligence

CIOs perennially deal with technical debts risks, costs, and complexities. While the impacts of legacy systems can be quantified, technical debt is also often embedded in subtler ways across the IT ecosystem, making it hard to account for the full list of issues and risks.

Risk 140
article thumbnail

AI adoption in the enterprise 2020

O'Reilly on Data

Whether it’s controlling for common risk factors—bias in model development, missing or poorly conditioned data, the tendency of models to degrade in production—or instantiating formal processes to promote data governance, adopters will have their work cut out for them as they work to establish reliable AI production lines.

article thumbnail

The future of data: A 5-pillar approach to modern data management

CIO Business Intelligence

The proposed model illustrates the data management practice through five functional pillars: Data platform; data engineering; analytics and reporting; data science and AI; and data governance. Implementing ML capabilities can help find the right thresholds. However, this landscape is rapidly evolving.

article thumbnail

What is data governance? Best practices for managing data assets

CIO Business Intelligence

Data governance definition Data governance is a system for defining who within an organization has authority and control over data assets and how those data assets may be used. It encompasses the people, processes, and technologies required to manage and protect data assets.

article thumbnail

What’s the Current State of Data Governance and Automation?

erwin

I’m excited to share the results of our new study with Dataversity that examines how data governance attitudes and practices continue to evolve. Defining Data Governance: What Is Data Governance? . 1 reason to implement data governance. Most have only data governance operations.