This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Data landscape in EUROGATE and current challenges faced in datagovernance The EUROGATE Group is a conglomerate of container terminals and service providers, providing container handling, intermodal transports, maintenance and repair, and seaworthy packaging services. Eliminate centralized bottlenecks and complex data pipelines.
Replace manual and recurring tasks for fast, reliable data lineage and overall datagovernance. It’s paramount that organizations understand the benefits of automating end-to-end data lineage. The importance of end-to-end data lineage is widely understood and ignoring it is risky business.
An understanding of the data’s origins and history helps answer questions about the origin of data in a Key Performance Indicator (KPI) reports, including: How the report tables and columns are defined in the metadata? Who are the data owners? What are the transformation rules? DataGovernance.
This is where metadata, or the data about data, comes into play. Having a data catalog is the cornerstone of your datagovernance strategy, but what supports your data catalog? Your metadata management framework provides the underlying structure that makes your data accessible and manageable.
This person (or group of individuals) ensures that the theory behind data quality is communicated to the development team. 2 – Data profiling. Data profiling is an essential process in the DQM lifecycle. This means there are no unintended data errors, and it corresponds to its appropriate designation (e.g.,
Building a Data Culture Within a Finance Department. Our finance users tell us that their first exposure to the Alation Data Catalog often comes soon after the launch of organization-wide datatransformation efforts. After all, finance is one of the greatest consumers of data within a business.
Organizations have spent a lot of time and money trying to harmonize data across diverse platforms , including cleansing, uploading metadata, converting code, defining business glossaries, tracking datatransformations and so on. And there’s control of that landscape to facilitate insight and collaboration and limit risk.
Nearly every data leader I talk to is in the midst of a datatransformation. As businesses look for ways to increase sales, improve customer experience, and stay ahead of the competition, they are realizing that data is their competitive advantage and the key to achieving their goals. And it’s no surprise, really.
In fact, the LIBOR transition program marks one of the largest datatransformation obstacles ever seen in financial services. Building an inventory of what will be affected is a huge undertaking across all of the data, reports, and structures that must be accounted for. Automated Data Lineage for Your LIBOR Project.
The entire generative AI pipeline hinges on the data pipelines that empower it, making it imperative to take the correct precautions. 4 key components to ensure reliable data ingestion Data quality and governance: Data quality means ensuring the security of data sources, maintaining holistic data and providing clear metadata.
This is done by visualizing the Azure Data Factory pipelines’ full column-level with source-to-target traceability through different datatransformations at the most detailed level. Octopai can fully map the BI landscape and trace metadata movement in a mixed environment including complex multi-vendor landscapes.
By reverse-engineering, parsing, and converting scripts, Octopai seamlessly connects all data points within and across organizational systems. While open-source tools such as Apache Atlas, Open Metadata, Egeria, Spline, and OpenLineage offer valuable capabilities, they come with their own sets of pros and cons.
We chatted about industry trends, why decentralization has become a hot topic in the data world, and how metadata drives many data-centric use cases. But, through it all, Mohan says it’s critical to view everything through the same lens: gaining business value from data. Data fabric is a technology architecture.
We took this a step further by creating a blueprint to create smart recommendations by linking similar data products using graph technology and ML. In this post, we showed how an organization can augment a data catalog with additional metadata by using ML and Neptune with an automated process.
More specifically, IDF has been integrated with Alation at an API level; this means that all generated pipeline code, metadata attributes, configuration files, and lineage are automatically synced (representing a huge time savings). They can better understand datatransformations, checks, and normalization. Transparency is key.
This involves unifying and sharing a single copy of data and metadata across IBM® watsonx.data ™, IBM® Db2 ®, IBM® Db2® Warehouse and IBM® Netezza ®, using native integrations and supporting open formats, all without the need for migration or recataloging.
During audits, HealthCo could clearly show how data was handled and processed, reducing the risk of non-compliance penalties. This not only protected the organization legally but also reinforced its commitment to high standards of datagovernance. This is where Octopai excels.
Data literacy — Employees can interpret and analyze data to draw logical conclusions; they can also identify subject matter experts best equipped to educate on specific data assets. Datagovernance is a key use case of the modern data stack. Who Can Adopt the Modern Data Stack?
Modern datagovernance is a strategic, ongoing and collaborative practice that enables organizations to discover and track their data, understand what it means within a business context, and maximize its security, quality and value. The What: DataGovernance Defined. Datagovernance has no standard definition.
Datasphere goes beyond the “big three” data usage end-user requirements (ease of discovery, access, and delivery) to include data orchestration (data ops and datatransformations) and business data contextualization (semantics, metadata, catalog services).
Under the federated mesh architecture, each divisional mesh functions as a node within the broader enterprise data mesh, maintaining a degree of autonomy in managing its data products. The following diagram illustrates the building blocks of the Institutional Data & AI Platform.
After connecting, you can query, visualize, and share data—governed by Amazon DataZone—within the tools you already know and trust. Publish data assets – As the data producer from the retail team, you must ingest individual data assets into Amazon DataZone. Lionel Pulickal is Sr. Solutions Architect at AWS
What Is DataGovernance In The Public Sector? Effective datagovernance for the public sector enables entities to ensure data quality, enhance security, protect privacy, and meet compliance requirements. With so much focus on compliance, democratizing data for self-service analytics can present a challenge.
In this blog, we’ll delve into the critical role of governance and data modeling tools in supporting a seamless data mesh implementation and explore how erwin tools can be used in that role. erwin also provides datagovernance, metadata management and data lineage software called erwin Data Intelligence by Quest.
The platform converges data cataloging, data ingestion, data profiling, data tagging, data discovery, and data exploration into a unified platform, driven by metadata. Modak Nabu automates repetitive tasks in the data preparation process and thus accelerates the data preparation by 4x.
This was, without a question, a significant departure from traditional analytic environments, which often meant vendor-lock in and the inability to work with data at scale. Another unexpected challenge was the introduction of Spark as a processing framework for big data. Comprehensive data security and datagovernance (i.e.
To ingest the data, smava uses a set of popular third-party customer data platforms complemented by custom scripts. After the data lands in Amazon S3, smava uses the AWS Glue Data Catalog and crawlers to automatically catalog the available data, capture the metadata, and provide an interface that allows querying all data assets.
For many organizations, a centralized data platform will fall short as it gives data teams much less autonomy over managing increasingly diverse and voluminous datasets. It embraces the reality of business and specialized data needs within teams and organizations.
Data lineage can also be used for compliance, auditing, and datagovernance purposes. DataOps Observability Five on data lineage: Data lineage traces data’s origin, history, and movement through various processing, storage, and analysis stages. What is missing in data lineage?
This field guide to data mapping will explore how data mapping connects volumes of data for enhanced decision-making. Why Data Mapping is Important Data mapping is a critical element of any data management initiative, such as data integration, data migration, datatransformation, data warehousing, or automation.
It offers a transparent and accurate view of how data flows through the system, ensuring robust compliance. DataTransformation and Modeling Jet’s low-code environment lets your users transform and model their data within Fabric, making data preparation for analysis easy.
We organize all of the trending information in your field so you don't have to. Join 42,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content