Remove Data Governance Remove Data Transformation Remove Metadata
article thumbnail

The What & Why of Data Governance

erwin

Modern data governance is a strategic, ongoing and collaborative practice that enables organizations to discover and track their data, understand what it means within a business context, and maximize its security, quality and value. The What: Data Governance Defined. Data governance has no standard definition.

article thumbnail

Top 6 Benefits of Automating End-to-End Data Lineage

erwin

Replace manual and recurring tasks for fast, reliable data lineage and overall data governance. It’s paramount that organizations understand the benefits of automating end-to-end data lineage. The importance of end-to-end data lineage is widely understood and ignoring it is risky business.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

What is Data Lineage? Top 5 Benefits of Data Lineage

erwin

An understanding of the data’s origins and history helps answer questions about the origin of data in a Key Performance Indicator (KPI) reports, including: How the report tables and columns are defined in the metadata? Who are the data owners? What are the transformation rules? Data Governance.

article thumbnail

How to Build a Successful Metadata Management Framework

Alation

This is where metadata, or the data about data, comes into play. Having a data catalog is the cornerstone of your data governance strategy, but what supports your data catalog? Your metadata management framework provides the underlying structure that makes your data accessible and manageable.

article thumbnail

The Ultimate Guide to Modern Data Quality Management (DQM) For An Effective Data Quality Control Driven by The Right Metrics

datapine

This person (or group of individuals) ensures that the theory behind data quality is communicated to the development team. 2 – Data profiling. Data profiling is an essential process in the DQM lifecycle. This means there are no unintended data errors, and it corresponds to its appropriate designation (e.g.,

article thumbnail

How Your Finance Team Can Lead Your Enterprise Data Transformation

Alation

Building a Data Culture Within a Finance Department. Our finance users tell us that their first exposure to the Alation Data Catalog often comes soon after the launch of organization-wide data transformation efforts. After all, finance is one of the greatest consumers of data within a business.

Finance 52
article thumbnail

Data Preparation and Data Mapping: The Glue Between Data Management and Data Governance to Accelerate Insights and Reduce Risks

erwin

Organizations have spent a lot of time and money trying to harmonize data across diverse platforms , including cleansing, uploading metadata, converting code, defining business glossaries, tracking data transformations and so on. And there’s control of that landscape to facilitate insight and collaboration and limit risk.