Remove Data Governance Remove Data Warehouse Remove Structured Data
article thumbnail

Data governance in the age of generative AI

AWS Big Data

Data is your generative AI differentiator, and a successful generative AI implementation depends on a robust data strategy incorporating a comprehensive data governance approach. Data governance is a critical building block across all these approaches, and we see two emerging areas of focus.

article thumbnail

When is data too clean to be useful for enterprise AI?

CIO Business Intelligence

Once the province of the data warehouse team, data management has increasingly become a C-suite priority, with data quality seen as key for both customer experience and business performance. But along with siloed data and compliance concerns , poor data quality is holding back enterprise AI projects.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Seamless integration of data lake and data warehouse using Amazon Redshift Spectrum and Amazon DataZone

AWS Big Data

Unifying these necessitates additional data processing, requiring each business unit to provision and maintain a separate data warehouse. This burdens business units focused solely on consuming the curated data for analysis and not concerned with data management tasks, cleansing, or comprehensive data processing.

Data Lake 108
article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

Data landscape in EUROGATE and current challenges faced in data governance The EUROGATE Group is a conglomerate of container terminals and service providers, providing container handling, intermodal transports, maintenance and repair, and seaworthy packaging services. Eliminate centralized bottlenecks and complex data pipelines.

IoT 100
article thumbnail

3 things to get right with data management for gen AI projects

CIO Business Intelligence

Collect, filter, and categorize data The first is a series of processes — collecting, filtering, and categorizing data — that may take several months for KM or RAG models. Structured data is relatively easy, but the unstructured data, while much more difficult to categorize, is the most valuable.

article thumbnail

Snowflake Offers a Platform for AI as well as Data

David Menninger's Analyst Perspectives

Snowflake was founded in 2012 to build a business around its cloud-based data warehouse with built-in data-sharing capabilities. Snowflake has expanded its reach over the years to address data engineering and data science, and long ago moved beyond being seen as just a cloud data warehouse.

article thumbnail

Get maximum value out of your cloud data warehouse with Amazon Redshift

AWS Big Data

In this post, we look at three key challenges that customers face with growing data and how a modern data warehouse and analytics system like Amazon Redshift can meet these challenges across industries and segments. The Stripe Data Pipeline is powered by the data sharing capability of Amazon Redshift.