Remove Data Integration Remove Data-driven Remove Testing
article thumbnail

The Race For Data Quality in a Medallion Architecture

DataKitchen

The Race For Data Quality In A Medallion Architecture The Medallion architecture pattern is gaining traction among data teams. It is a layered approach to managing and transforming data. By systematically moving data through these layers, the Medallion architecture enhances the data structure in a data lakehouse environment.

article thumbnail

The DataOps Vendor Landscape, 2021

DataKitchen

This is not surprising given that DataOps enables enterprise data teams to generate significant business value from their data. Companies that implement DataOps find that they are able to reduce cycle times from weeks (or months) to days, virtually eliminate data errors, increase collaboration, and dramatically improve productivity.

Testing 304
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Bigeye Enable Monitoring, Quality and Lineage of Data

David Menninger's Analyst Perspectives

I previously explained that data observability software has become a critical component of data-driven decision-making. Data observability addresses one of the most significant impediments to generating value from data by providing an environment for monitoring the quality and reliability of data on a continual basis.

article thumbnail

Data Integrity, the Basis for Reliable Insights

Sisense

We live in a world of data: There’s more of it than ever before, in a ceaselessly expanding array of forms and locations. Dealing with Data is your window into the ways data teams are tackling the challenges of this new world to help their companies and their customers thrive. What is data integrity?

article thumbnail

Fire Your Super-Smart Data Consultants with DataOps

DataKitchen

Analytics are prone to frequent data errors and deployment of analytics is slow and laborious. When internal resources fall short, companies outsource data engineering and analytics. There’s no shortage of consultants who will promise to manage the end-to-end lifecycle of data from integration to transformation to visualization. .

article thumbnail

Accelerate data integration with Salesforce and AWS using AWS Glue

AWS Big Data

The rapid adoption of software as a service (SaaS) solutions has led to data silos across various platforms, presenting challenges in consolidating insights from diverse sources. Introducing the Salesforce connector for AWS Glue To meet the demands of diverse data integration use cases, AWS Glue now supports SaaS connectivity for Salesforce.

article thumbnail

What gives IT leaders pause as they look to integrate agentic AI with legacy infrastructure

CIO Business Intelligence

We actually started our AI journey using agents almost right out of the gate, says Gary Kotovets, chief data and analytics officer at Dun & Bradstreet. The problem is that, before AI agents can be integrated into a companys infrastructure, that infrastructure must be brought up to modern standards. According to the Tray.ai

IT 141