Remove Data Integration Remove Data Lake Remove Data Science
article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

For container terminal operators, data-driven decision-making and efficient data sharing are vital to optimizing operations and boosting supply chain efficiency. Two use cases illustrate how this can be applied for business intelligence (BI) and data science applications, using AWS services such as Amazon Redshift and Amazon SageMaker.

IoT 101
article thumbnail

How Cloudinary transformed their petabyte scale streaming data lake with Apache Iceberg and AWS Analytics

AWS Big Data

Various data pipelines process these logs, storing petabytes (PBs) of data per month, which after processing data stored on Amazon S3, are then stored in Snowflake Data Cloud. Until recently, this data was mostly prepared by automated processes and aggregated into results tables, used by only a few internal teams.

Data Lake 122
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

The next generation of Amazon SageMaker: The center for all your data, analytics, and AI

AWS Big Data

Amazon SageMaker Lakehouse , now generally available, unifies all your data across Amazon Simple Storage Service (Amazon S3) data lakes and Amazon Redshift data warehouses, helping you build powerful analytics and AI/ML applications on a single copy of data. The tools to transform your business are here.

article thumbnail

What is data architecture? A framework to manage data

CIO Business Intelligence

Beyond breaking down silos, modern data architectures need to provide interfaces that make it easy for users to consume data using tools fit for their jobs. Data must be able to freely move to and from data warehouses, data lakes, and data marts, and interfaces must make it easy for users to consume that data.

article thumbnail

The Data Lakehouse: Blending Data Warehouses and Data Lakes

Data Virtualization

Reading Time: 3 minutes First we had data warehouses, then came data lakes, and now the new kid on the block is the data lakehouse. But what is a data lakehouse and why should we develop one? In a way, the name describes what.

article thumbnail

Create an Apache Hudi-based near-real-time transactional data lake using AWS DMS, Amazon Kinesis, AWS Glue streaming ETL, and data visualization using Amazon QuickSight

AWS Big Data

Data analytics on operational data at near-real time is becoming a common need. Due to the exponential growth of data volume, it has become common practice to replace read replicas with data lakes to have better scalability and performance. Apache Hudi connector for AWS Glue For this post, we use AWS Glue 4.0,

article thumbnail

The Key Components of a Successful Data Lake Strategy

Data Virtualization

Reading Time: 6 minutes Data lake, by combining the flexibility of object storage with the scalability and agility of cloud platforms, are becoming an increasingly popular choice as an enterprise data repository. Whether you are on Amazon Web Services (AWS) and leverage AWS S3.