Remove Data Integration Remove Data Lake Remove Structured Data
article thumbnail

Recap of Amazon Redshift key product announcements in 2024

AWS Big Data

Today, Amazon Redshift is used by customers across all industries for a variety of use cases, including data warehouse migration and modernization, near real-time analytics, self-service analytics, data lake analytics, machine learning (ML), and data monetization.

article thumbnail

Seamless integration of data lake and data warehouse using Amazon Redshift Spectrum and Amazon DataZone

AWS Big Data

Unlocking the true value of data often gets impeded by siloed information. Traditional data management—wherein each business unit ingests raw data in separate data lakes or warehouses—hinders visibility and cross-functional analysis. Amazon DataZone natively supports data sharing for Amazon Redshift data assets.

Data Lake 109
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Salesforce debuts Zero Copy Partner Network to ease data integration

CIO Business Intelligence

For instance, a Data Cloud-triggered flow could update an account manager in Slack when shipments in an external data lake are marked as delayed. Sharing Customer 360 insights back without data replication. Currently, Data Cloud leverages live SQL queries to access data from external data platforms via zero copy.

article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

cycle_end"', "sagemakedatalakeenvironment_sub_db", ctas_approach=False) A similar approach is used to connect to shared data from Amazon Redshift, which is also shared using Amazon DataZone. While real-time data is processed by other applications, this setup maintains high-performance analytics without the expense of continuous processing.

IoT 101
article thumbnail

Databricks’ new data lakehouse aims at media, entertainment sector

CIO Business Intelligence

The data lakehouse is a relatively new data architecture concept, first championed by Cloudera, which offers both storage and analytics capabilities as part of the same solution, in contrast to the concepts for data lake and data warehouse which, respectively, store data in native format, and structured data, often in SQL format.

article thumbnail

Detect, mask, and redact PII data using AWS Glue before loading into Amazon OpenSearch Service

AWS Big Data

Ingestion: Data lake batch, micro-batch, and streaming Many organizations land their source data into their data lake in various ways, including batch, micro-batch, and streaming jobs. Amazon AppFlow can be used to transfer data from different SaaS applications to a data lake.

Data Lake 109
article thumbnail

Data governance in the age of generative AI

AWS Big Data

However, enterprise data generated from siloed sources combined with the lack of a data integration strategy creates challenges for provisioning the data for generative AI applications. As part of the transformation, the objects need to be treated to ensure data privacy (for example, PII redaction).