Remove Data Integration Remove Data Processing Remove Modeling
article thumbnail

Why you should care about debugging machine learning models

O'Reilly on Data

Not least is the broadening realization that ML models can fail. And that’s why model debugging, the art and science of understanding and fixing problems in ML models, is so critical to the future of ML. Because all ML models make mistakes, everyone who cares about ML should also care about model debugging. [1]

article thumbnail

The DataOps Vendor Landscape, 2021

DataKitchen

DataOps needs a directed graph-based workflow that contains all the data access, integration, model and visualization steps in the data analytic production process. It orchestrates complex pipelines, toolchains, and tests across teams, locations, and data centers. Meta-Orchestration .

Testing 300
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

The success of GenAI models lies in your data management strategy

CIO Business Intelligence

However, this enthusiasm may be tempered by a host of challenges and risks stemming from scaling GenAI. As the technology subsists on data, customer trust and their confidential information are at stake—and enterprises cannot afford to overlook its pitfalls.

Strategy 143
article thumbnail

Artificial intelligence and machine learning adoption in European enterprise

O'Reilly on Data

In this post, I’ll describe some of the key areas of interest and concern highlighted by respondents from Europe, while describing how some of these topics will be covered at the upcoming Strata Data conference in London (April 29 - May 2, 2019). Data Platforms. Data Integration and Data Pipelines.

article thumbnail

Demystify data sharing and collaboration patterns on AWS: Choosing the right tool for the job

AWS Big Data

When dealing with third-party data sources, AWS Data Exchange simplifies the discovery, subscription, and utilization of third-party data from a diverse range of producers or providers. As a producer, you can also monetize your data through the subscription model using AWS Data Exchange.

Sales 104
article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

In addition to real-time analytics and visualization, the data needs to be shared for long-term data analytics and machine learning applications. To achieve this, EUROGATE designed an architecture that uses Amazon DataZone to publish specific digital twin data sets, enabling access to them with SageMaker in a separate AWS account.

IoT 100
article thumbnail

Scaling RISE with SAP data and AWS Glue

AWS Big Data

The SAP OData connector supports both on-premises and cloud-hosted (native and SAP RISE) deployments. By using the AWS Glue OData connector for SAP, you can work seamlessly with your data on AWS Glue and Apache Spark in a distributed fashion for efficient processing.