Remove Data Integration Remove Data Processing Remove Visualization
article thumbnail

Amazon Q data integration adds DataFrame support and in-prompt context-aware job creation

AWS Big Data

Amazon Q data integration , introduced in January 2024, allows you to use natural language to author extract, transform, load (ETL) jobs and operations in AWS Glue specific data abstraction DynamicFrame. In this post, we discuss how Amazon Q data integration transforms ETL workflow development.

article thumbnail

Scaling RISE with SAP data and AWS Glue

AWS Big Data

The SAP OData connector supports both on-premises and cloud-hosted (native and SAP RISE) deployments. By using the AWS Glue OData connector for SAP, you can work seamlessly with your data on AWS Glue and Apache Spark in a distributed fashion for efficient processing. In the navigation pane under ETL Jobs choose Visual ETL.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

The DataOps Vendor Landscape, 2021

DataKitchen

DataOps needs a directed graph-based workflow that contains all the data access, integration, model and visualization steps in the data analytic production process. It orchestrates complex pipelines, toolchains, and tests across teams, locations, and data centers. Meta-Orchestration .

Testing 300
article thumbnail

Introducing a new unified data connection experience with Amazon SageMaker Lakehouse unified data connectivity

AWS Big Data

Third, some services require you to set up and manage compute resources used for federated connectivity, and capabilities like connection testing and data preview arent available in all services. To solve for these challenges, we launched Amazon SageMaker Lakehouse unified data connectivity. For Add data source , choose Add connection.

article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

In addition to real-time analytics and visualization, the data needs to be shared for long-term data analytics and machine learning applications. The applications are hosted in dedicated AWS accounts and require a BI dashboard and reporting services based on Tableau.

IoT 100
article thumbnail

Enhance monitoring and debugging for AWS Glue jobs using new job observability metrics, Part 3: Visualization and trend analysis using Amazon QuickSight

AWS Big Data

QuickSight makes it straightforward for business users to visualize data in interactive dashboards and reports. You can slice data by different dimensions like job name, see anomalies, and share reports securely across your organization. Typically, you have multiple accounts to manage and run resources for your data pipeline.

Metrics 118
article thumbnail

Demystify data sharing and collaboration patterns on AWS: Choosing the right tool for the job

AWS Big Data

Let’s briefly describe the capabilities of the AWS services we referred above: AWS Glue is a fully managed, serverless, and scalable extract, transform, and load (ETL) service that simplifies the process of discovering, preparing, and loading data for analytics. To incorporate this third-party data, AWS Data Exchange is the logical choice.

Sales 104