Remove Data Integration Remove Data Quality Remove Data Science
article thumbnail

The DataOps Vendor Landscape, 2021

DataKitchen

Piperr.io — Pre-built data pipelines across enterprise stakeholders, from IT to analytics, tech, data science and LoBs. Prefect Technologies — Open-source data engineering platform that builds, tests, and runs data workflows. Genie — Distributed big data orchestration service by Netflix. Data breaks.

Testing 300
article thumbnail

The quest for high-quality data

O'Reilly on Data

Machine learning solutions for data integration, cleaning, and data generation are beginning to emerge. “AI AI starts with ‘good’ data” is a statement that receives wide agreement from data scientists, analysts, and business owners. Data integration and cleaning. Data unification and integration.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Data integrity vs. data quality: Is there a difference?

IBM Big Data Hub

When we talk about data integrity, we’re referring to the overarching completeness, accuracy, consistency, accessibility, and security of an organization’s data. Together, these factors determine the reliability of the organization’s data. In short, yes.

article thumbnail

Top 10 Analytics And Business Intelligence Trends For 2020

datapine

Companies are no longer wondering if data visualizations improve analyses but what is the best way to tell each data-story. 2020 will be the year of data quality management and data discovery: clean and secure data combined with a simple and powerful presentation. 1) Data Quality Management (DQM).

article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

For container terminal operators, data-driven decision-making and efficient data sharing are vital to optimizing operations and boosting supply chain efficiency. Two use cases illustrate how this can be applied for business intelligence (BI) and data science applications, using AWS services such as Amazon Redshift and Amazon SageMaker.

IoT 100
article thumbnail

The next generation of Amazon SageMaker: The center for all your data, analytics, and AI

AWS Big Data

SageMaker Lakehouse enables seamless data access directly in the new SageMaker Unified Studio and provides the flexibility to access and query your data with all Apache Iceberg-compatible tools on a single copy of analytics data. Having confidence in your data is key.

article thumbnail

Deep automation in machine learning

O'Reilly on Data

We need to do more than automate model building with autoML; we need to automate tasks at every stage of the data pipeline. In a previous post , we talked about applications of machine learning (ML) to software development, which included a tour through sample tools in data science and for managing data infrastructure.