Remove Data Integration Remove Data Quality Remove Management
article thumbnail

A Guide to the Six Types of Data Quality Dashboards

DataKitchen

A Guide to the Six Types of Data Quality Dashboards Poor-quality data can derail operations, misguide strategies, and erode the trust of both customers and stakeholders. However, not all data quality dashboards are created equal. These dimensions provide a best practice grouping for assessing data quality.

article thumbnail

Talend Data Fabric Simplifies Data Life Cycle Management

David Menninger's Analyst Perspectives

Talend is a data integration and management software company that offers applications for cloud computing, big data integration, application integration, data quality and master data management.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Data Management on Display at Informatica World 2019

David Menninger's Analyst Perspectives

Under that focus, Informatica's conference emphasized capabilities across six areas (all strong areas for Informatica): data integration, data management, data quality & governance, Master Data Management (MDM), data cataloging, and data security.

article thumbnail

Data Observability and Data Quality Testing Certification Series

DataKitchen

Data Observability and Data Quality Testing Certification Series We are excited to invite you to a free four-part webinar series that will elevate your understanding and skills in Data Observation and Data Quality Testing. Slides and recordings will be provided.

article thumbnail

The Race For Data Quality in a Medallion Architecture

DataKitchen

The Race For Data Quality In A Medallion Architecture The Medallion architecture pattern is gaining traction among data teams. It is a layered approach to managing and transforming data. It sounds great, but how do you prove the data is correct at each layer? How do you ensure data quality in every layer

article thumbnail

Build Write-Audit-Publish pattern with Apache Iceberg branching and AWS Glue Data Quality

AWS Big Data

Given the importance of data in the world today, organizations face the dual challenges of managing large-scale, continuously incoming data while vetting its quality and reliability. One of its key features is the ability to manage data using branches.

article thumbnail

Innovative data integration in 2024: Pioneering the future of data integration

CIO Business Intelligence

In the age of big data, where information is generated at an unprecedented rate, the ability to integrate and manage diverse data sources has become a critical business imperative. Traditional data integration methods are often cumbersome, time-consuming, and unable to keep up with the rapidly evolving data landscape.