Remove Data Integration Remove Data Science Remove Metadata
article thumbnail

How companies are building sustainable AI and ML initiatives

O'Reilly on Data

In other words, could we see a roadmap for transitioning from legacy cases (perhaps some business intelligence) toward data science practices, and from there into the tooling required for more substantial AI adoption? Data scientists and data engineers are in demand.

article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

For container terminal operators, data-driven decision-making and efficient data sharing are vital to optimizing operations and boosting supply chain efficiency. Two use cases illustrate how this can be applied for business intelligence (BI) and data science applications, using AWS services such as Amazon Redshift and Amazon SageMaker.

IoT 101
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Becoming a machine learning company means investing in foundational technologies

O'Reilly on Data

Not surprisingly, data integration and ETL were among the top responses, with 60% currently building or evaluating solutions in this area. In an age of data-hungry algorithms, everything really begins with collecting and aggregating data. Key features of many data science platforms. Source: O'Reilly.

article thumbnail

Are You Content with Your Organization’s Content Strategy?

Rocket-Powered Data Science

This is accomplished through tags, annotations, and metadata (TAM). granules) of the data collection for fast search, access, and retrieval is also important for efficient orchestration and delivery of the data that fuels AI, automation, and machine learning operations. Collect, curate, and catalog (i.e.,

Strategy 267
article thumbnail

Deep automation in machine learning

O'Reilly on Data

We need to do more than automate model building with autoML; we need to automate tasks at every stage of the data pipeline. In a previous post , we talked about applications of machine learning (ML) to software development, which included a tour through sample tools in data science and for managing data infrastructure.

article thumbnail

Metadata, the Neglected Stepchild of IT

Data Virtualization

Reading Time: 3 minutes While cleaning up our archive recently, I found an old article published in 1976 about data dictionary/directory systems (DD/DS). Nowadays, we no longer use the term DD/DS, but “data catalog” or simply “metadata system”. It was written by L.

article thumbnail

Data integrity vs. data quality: Is there a difference?

IBM Big Data Hub

When we talk about data integrity, we’re referring to the overarching completeness, accuracy, consistency, accessibility, and security of an organization’s data. Together, these factors determine the reliability of the organization’s data. In short, yes.