Remove Data Integration Remove Data Transformation Remove Metadata
article thumbnail

Bridging the gap between mainframe data and hybrid cloud environments

CIO Business Intelligence

A high hurdle many enterprises have yet to overcome is accessing mainframe data via the cloud. Mainframes hold an enormous amount of critical and sensitive business data including transactional information, healthcare records, customer data, and inventory metrics. Four key challenges prevent them from doing so: 1.

article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

An extract, transform, and load (ETL) process using AWS Glue is triggered once a day to extract the required data and transform it into the required format and quality, following the data product principle of data mesh architectures. This process is shown in the following figure.

IoT 111
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Modernize your ETL platform with AWS Glue Studio: A case study from BMS

AWS Big Data

In addition to using native managed AWS services that BMS didn’t need to worry about upgrading, BMS was looking to offer an ETL service to non-technical business users that could visually compose data transformation workflows and seamlessly run them on the AWS Glue Apache Spark-based serverless data integration engine.

Metadata 111
article thumbnail

Introducing a new unified data connection experience with Amazon SageMaker Lakehouse unified data connectivity

AWS Big Data

Third, some services require you to set up and manage compute resources used for federated connectivity, and capabilities like connection testing and data preview arent available in all services. To solve for these challenges, we launched Amazon SageMaker Lakehouse unified data connectivity.

article thumbnail

What is Data Lineage? Top 5 Benefits of Data Lineage

erwin

Many large organizations, in their desire to modernize with technology, have acquired several different systems with various data entry points and transformation rules for data as it moves into and across the organization. Who are the data owners? What are the transformation rules? Data Governance.

article thumbnail

Biggest Trends in Data Visualization Taking Shape in 2022

Smart Data Collective

There are countless examples of big data transforming many different industries. There is no disputing the fact that the collection and analysis of massive amounts of unstructured data has been a huge breakthrough. Does Data Virtualization support web data integration?

article thumbnail

The importance of data ingestion and integration for enterprise AI

IBM Big Data Hub

The entire generative AI pipeline hinges on the data pipelines that empower it, making it imperative to take the correct precautions. 4 key components to ensure reliable data ingestion Data quality and governance: Data quality means ensuring the security of data sources, maintaining holistic data and providing clear metadata.