Remove Data Integration Remove Data Transformation Remove Reporting
article thumbnail

Data Integrity, the Basis for Reliable Insights

Sisense

Uncomfortable truth incoming: Most people in your organization don’t think about the quality of their data from intake to production of insights. However, as a data team member, you know how important data integrity (and a whole host of other aspects of data management) is. What is data integrity?

article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

In the following section, two use cases demonstrate how the data mesh is established with Amazon DataZone to better facilitate machine learning for an IoT-based digital twin and BI dashboards and reporting using Tableau. This agility accelerates EUROGATEs insight generation, keeping decision-making aligned with current data.

IoT 105
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Ensuring Data Transformation Quality with dbt Core

Wayne Yaddow

How dbt Core aids data teams test, validate, and monitor complex data transformations and conversions Photo by NASA on Unsplash Introduction dbt Core, an open-source framework for developing, testing, and documenting SQL-based data transformations, has become a must-have tool for modern data teams as the complexity of data pipelines grows.

article thumbnail

Complex Data Transformations — Test Planning Best Practices

Wayne Yaddow

Complex Data TransformationsTest Planning Best Practices Ensuring data accuracy with structured testing and best practices Photo by Taylor Vick on Unsplash Introduction Data transformations and conversions are crucial for data pipelines, enabling organizations to process, integrate, and refine raw data into meaningful insights.

Testing 52
article thumbnail

Key Challenges Affecting Data Transformations—Dev and Testing

Wayne Yaddow

Common challenges and practical mitigation strategies for reliable data transformations. Photo by Mika Baumeister on Unsplash Introduction Data transformations are important processes in data engineering, enabling organizations to structure, enrich, and integrate data for analytics , reporting, and operational decision-making.

Testing 52
article thumbnail

Data Engineers Are Using AI to Verify Data Transformations

Wayne Yaddow

AI is transforming how senior data engineers and data scientists validate data transformations and conversions. Artificial intelligence-based verification approaches aid in the detection of anomalies, the enforcement of data integrity, and the optimization of pipelines for improved efficiency.

article thumbnail

From Raw Inputs to Polished Outputs: The Art of Testing Data Transformations

Wayne Yaddow

In this post, well see the fundamental procedures, tools, and techniques that data engineers, data scientists, and QA/testing teams use to ensure high-quality data as soon as its deployed. First, we look at how unit and integration tests uncover transformation errors at an early stage.

Testing 52