Remove Data Integration Remove Data Transformation Remove Strategy
article thumbnail

8 data strategy mistakes to avoid

CIO Business Intelligence

Organizations can’t afford to mess up their data strategies, because too much is at stake in the digital economy. How enterprises gather, store, cleanse, access, and secure their data can be a major factor in their ability to meet corporate goals. Here are some data strategy mistakes IT leaders would be wise to avoid.

article thumbnail

Data transformation takes flight at Atlanta’s Hartsfield-Jackson airport

CIO Business Intelligence

As part of its plan, the IT team conducted a wide-ranging data assessment to determine who has access to what data, and each data source’s encryption needs. There are a lot of variables that determine what should go into the data lake and what will probably stay on premise,” Pruitt says.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Complex Data Transformations — Test Planning Best Practices

Wayne Yaddow

Complex Data TransformationsTest Planning Best Practices Ensuring data accuracy with structured testing and best practices Photo by Taylor Vick on Unsplash Introduction Data transformations and conversions are crucial for data pipelines, enabling organizations to process, integrate, and refine raw data into meaningful insights.

Testing 52
article thumbnail

Available Now! Automated Testing for Data Transformations

Wayne Yaddow

Selecting the strategies and tools for validating data transformations and data conversions in your data pipelines. Introduction Data transformations and data conversions are crucial to ensure that raw data is organized, processed, and ready for useful analysis.

Testing 52
article thumbnail

Ensuring Data Transformation Quality with dbt Core

Wayne Yaddow

How dbt Core aids data teams test, validate, and monitor complex data transformations and conversions Photo by NASA on Unsplash Introduction dbt Core, an open-source framework for developing, testing, and documenting SQL-based data transformations, has become a must-have tool for modern data teams as the complexity of data pipelines grows.

article thumbnail

Key Challenges Affecting Data Transformations—Dev and Testing

Wayne Yaddow

Common challenges and practical mitigation strategies for reliable data transformations. Photo by Mika Baumeister on Unsplash Introduction Data transformations are important processes in data engineering, enabling organizations to structure, enrich, and integrate data for analytics , reporting, and operational decision-making.

Testing 52
article thumbnail

Functional Gaps in Your Data Transformation Testing Tools?

Wayne Yaddow

Managing tests of complex data transformations when automated data testing tools lack important features? Photo by Marvin Meyer on Unsplash Introduction Data transformations are at the core of modern business intelligence, blending and converting disparate datasets into coherent, reliable outputs.

Testing 52