Remove Data Integration Remove Data Warehouse Remove Reference
article thumbnail

Load data incrementally from transactional data lakes to data warehouses

AWS Big Data

Data lakes and data warehouses are two of the most important data storage and management technologies in a modern data architecture. Data lakes store all of an organization’s data, regardless of its format or structure. Various data stores are supported in AWS Glue; for example, AWS Glue 4.0

Data Lake 117
article thumbnail

Introducing Amazon Q data integration in AWS Glue

AWS Big Data

Today, we’re excited to announce general availability of Amazon Q data integration in AWS Glue. Amazon Q data integration, a new generative AI-powered capability of Amazon Q Developer , enables you to build data integration pipelines using natural language.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Seamless integration of data lake and data warehouse using Amazon Redshift Spectrum and Amazon DataZone

AWS Big Data

Unifying these necessitates additional data processing, requiring each business unit to provision and maintain a separate data warehouse. This burdens business units focused solely on consuming the curated data for analysis and not concerned with data management tasks, cleansing, or comprehensive data processing.

Data Lake 104
article thumbnail

Salesforce debuts Zero Copy Partner Network to ease data integration

CIO Business Intelligence

Currently, a handful of startups offer “reverse” extract, transform, and load (ETL), in which they copy data from a customer’s data warehouse or data platform back into systems of engagement where business users do their work. Sharing Customer 360 insights back without data replication.

article thumbnail

Amazon Q data integration adds DataFrame support and in-prompt context-aware job creation

AWS Big Data

Amazon Q data integration , introduced in January 2024, allows you to use natural language to author extract, transform, load (ETL) jobs and operations in AWS Glue specific data abstraction DynamicFrame. In this post, we discuss how Amazon Q data integration transforms ETL workflow development.

article thumbnail

How Kaplan, Inc. implemented modern data pipelines using Amazon MWAA and Amazon AppFlow with Amazon Redshift as a data warehouse

AWS Big Data

The infrastructure provides an analytics experience to hundreds of in-house analysts, data scientists, and student-facing frontend specialists. The data engineering team is on a mission to modernize its data integration platform to be agile, adaptive, and straightforward to use.

article thumbnail

Accelerate data integration with Salesforce and AWS using AWS Glue

AWS Big Data

Effective data analytics relies on seamlessly integrating data from disparate systems through identifying, gathering, cleansing, and combining relevant data into a unified format. Reverse ETL use cases are also supported, allowing you to write data back to Salesforce.