Remove Data Integration Remove Events Remove Metadata
article thumbnail

Simplify data integration with AWS Glue and zero-ETL to Amazon SageMaker Lakehouse

AWS Big Data

With the growing emphasis on data, organizations are constantly seeking more efficient and agile ways to integrate their data, especially from a wide variety of applications. We take care of the ETL for you by automating the creation and management of data replication. Glue ETL offers customer-managed data ingestion.

article thumbnail

Build a high-performance quant research platform with Apache Iceberg

AWS Big Data

Iceberg offers distinct advantages through its metadata layer over Parquet, such as improved data management, performance optimization, and integration with various query engines. Unlike direct Amazon S3 access, Iceberg supports these operations on petabyte-scale data lakes without requiring complex custom code.

Metadata 106
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Monitoring Apache Iceberg metadata layer using AWS Lambda, AWS Glue, and AWS CloudWatch

AWS Big Data

It addresses many of the shortcomings of traditional data lakes by providing features such as ACID transactions, schema evolution, row-level updates and deletes, and time travel. In this blog post, we’ll discuss how the metadata layer of Apache Iceberg can be used to make data lakes more efficient.

Metadata 118
article thumbnail

Salesforce debuts Zero Copy Partner Network to ease data integration

CIO Business Intelligence

“The challenge that a lot of our customers have is that requires you to copy that data, store it in Salesforce; you have to create a place to store it; you have to create an object or field in which to store it; and then you have to maintain that pipeline of data synchronization and make sure that data is updated,” Carlson said.

article thumbnail

Are You Content with Your Organization’s Content Strategy?

Rocket-Powered Data Science

This is accomplished through tags, annotations, and metadata (TAM). granules) of the data collection for fast search, access, and retrieval is also important for efficient orchestration and delivery of the data that fuels AI, automation, and machine learning operations. Collect, curate, and catalog (i.e.,

Strategy 267
article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

An extract, transform, and load (ETL) process using AWS Glue is triggered once a day to extract the required data and transform it into the required format and quality, following the data product principle of data mesh architectures. From here, the metadata is published to Amazon DataZone by using AWS Glue Data Catalog.

IoT 100
article thumbnail

Data’s dark secret: Why poor quality cripples AI and growth

CIO Business Intelligence

We also examine how centralized, hybrid and decentralized data architectures support scalable, trustworthy ecosystems. As data-centric AI, automated metadata management and privacy-aware data sharing mature, the opportunity to embed data quality into the enterprises core has never been more significant.